6.計算${1.1^0}+\root{3}{512}-{0.5^{-2}}+lg25+2lg2$=7.

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的運算法則即可得出.

解答 解:原式=1+8-4+lg100=5+2=7.
故答案為:7.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)$y=\sqrt{k{x^2}+kx+3}$的定義域為R,則k的取值范圍是( 。
A.(-∞,0]∪[12,+∞)B.(-∞,0)∪(12,+∞)C.(0,12)D.[0,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等式:
cos261°+sin231°+cos61°sin31°=a
cos266°+sin236°+cos66°sin36°=a
cos220°+sin210°+cos20°sin(-10°)=a
cos28°+sin222°+cos8°sin(-22°)=a
(Ι)根據(jù)以上所給的等式歸納出一個具有一般性的等式,并指出實數(shù)a的值
(Ⅱ)證明你寫的等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若圓x2+y2-ax-2=0與拋物線y2=4x的準(zhǔn)線相切,則a的值是1 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已經(jīng)集合A={x|(8x-1)(x-1)≤0};集合C={x|a<x<2a+5}
(1)若${(\frac{1}{4})^t}∈A$,求實數(shù)t的取值集合B;
(2)在(1)的條件下,若(A∪B)⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{{{\;}_{{3^x},x≤0}^{{{log}_2}x,x>0}}\right.$,則$f[{f(\frac{1}{2})}]$=( 。
A.-3B.3C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2-bx (a,b∈R).若y=f(x)圖象上的點(1,-$\frac{11}{3}$)處的切線斜率為-4.
(1)求a、b的值;
(2)求y=f(x)的極大值;
(3)對?x∈[-2,3],都有f(x)-k<0,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線C:y2=4x的焦點為F,直線y=x-2與C交于A,B兩點,
(I)求線段AB的長;
(II)求三角形ABF的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且橢圓上的點到焦點的距離最小值為1,若F為左焦點,A為左頂點,過F的直線交橢圓于M,N直線AM,AN交直線x=t(t<-2)于B,C兩點.
(1)求橢圓方程;
(2)若以BC為直徑的圓過F,求t的值.

查看答案和解析>>

同步練習(xí)冊答案