12.若橢圓$\frac{{x}^{2}}{3}$+$\frac{{y}^{2}}{m}$=1的離心率為$\frac{1}{2}$,則m=( 。
A.$\frac{9}{4}$B.4C.$\frac{9}{4}$或4D.$\frac{3}{2}$

分析 分焦點在x軸和y軸得到a2,b2的值,進一步求出c2,然后結(jié)合離心率求得m值.

解答 解:當(dāng)焦點在x軸上時,a2=3,b2=m,c2=3-m,
由$\frac{c}{a}=\frac{1}{2}$,得$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{4}$,即$\frac{3-m}{3}=\frac{1}{4}$,解得m=$\frac{9}{4}$;
當(dāng)焦點在x軸上時,a2=m,b2=3,c2=m-3,
由$\frac{c}{a}=\frac{1}{2}$,得$\frac{{c}^{2}}{{a}^{2}}=\frac{1}{4}$,即$\frac{m-3}{m}=\frac{1}{4}$,解得m=4.
∴m=$\frac{9}{4}$或4.
故選:C.

點評 本題考查橢圓的簡單性質(zhì),體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)橢圓的一個焦點與拋物線x2=8y的焦點相同,離心率為$\frac{1}{2}$,則此橢圓的標(biāo)準方程為( 。
A.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{48}$+$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$+$\frac{{y}^{2}}{48}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l:x-y+2=0過橢圓的左焦點F1和一個頂點B,該橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓的中心在坐標(biāo)原點O,焦點在x軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且焦距為4.
(1)求橢圓的方程;
(2)直線l過點P(0,2)且與橢圓相交于A、B兩點,當(dāng)△AOB面積取得最大值時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.求直線l1:x-2y+1=0關(guān)于直線l:x-2y-5=0對稱的直線方程l2的方程為7x-4y-28=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)定義域為R的函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{|x-1|}(x≠1)}\\{1(x=1)}\end{array}\right.$,若關(guān)于x的方程f2(x)+bf(x)+c=0有5個不同的實數(shù)解,則b+c值為( 。
A.0B.1C.-1D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知中心在原點的橢圓C的一個焦點為F(0,1),離心率為$\frac{1}{2}$,則橢圓C的標(biāo)準方程為$\frac{y^2}{4}+\frac{x^2}{3}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.對于任意的$m∈[\frac{1}{2},3]$,不等式t2+mt>2m+4恒成立,則實數(shù)t的取值范圍是(-∞,-5)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}是等差數(shù)列,公差d不為0,Sn是其前n項和,若a3,a4,a8成等比數(shù)列,則下列四個結(jié)論
①a1d<0;②dS4<0;③S8=-20S4;④等比數(shù)列a3,a4,a8的公比為4.其中正確的是①②④.(請把正確結(jié)論的序號全部填上)

查看答案和解析>>

同步練習(xí)冊答案