某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛,經(jīng)過(guò)t小時(shí)與輪船相遇。
(Ⅰ)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?
(Ⅱ)假設(shè)小艇的最高航行速度只能達(dá)到30海里/小時(shí),試設(shè)計(jì)航行方案(即確定航行方向和航行速度的大。,使得小艇能以最短時(shí)間與輪船相遇,并說(shuō)明理由。
(Ⅰ)海里/小時(shí)(Ⅱ)方案如下:航行方向?yàn)楸逼珫|,航行速度為30海里/小時(shí),小艇能以最短時(shí)間與輪船相遇.
解析試題分析:(I)設(shè)相遇時(shí)小艇航行的距離為S海里,則
=
=,
故當(dāng)時(shí),,此時(shí),
即小艇以海里/小時(shí)的速度航行,相遇時(shí)小艇的航行距離最小。
(II)設(shè)小艇與輪船在B出相遇,則
,
故,
,,
即,解得,
又時(shí),,
故時(shí),t取最小值,且最小值等于,
此時(shí),在中,有,故可設(shè)計(jì)方案如下:
航行方向?yàn)楸逼珫|,航行速度為30海里/小時(shí),小艇能以最短時(shí)間與輪船相遇.
考點(diǎn):本小題主要考查解三角形在實(shí)際問(wèn)題中的應(yīng)用.
點(diǎn)評(píng):正弦定理和余弦定理在解三角形中應(yīng)用十分廣泛,要準(zhǔn)確靈活應(yīng)用,應(yīng)用正弦定理時(shí)要注意解的個(gè)數(shù)問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,已知,.
(Ⅰ)若的面積等于,求;
(Ⅱ)若,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知的面積滿足,且,與的夾角為.
(1)求的取值范圍;
(2)求函數(shù)的最大值及最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)在中,角的對(duì)邊分別為,且成等差數(shù)列。
(Ⅰ)若,且,求的值;
(Ⅱ)求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知為的三內(nèi)角,且其對(duì)邊分別為.若向量,,向量,,且.
(1)求的值; (2)若,三角形面積,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分) 在銳角中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是, 且
(Ⅰ)求
(Ⅱ)若, ,求ΔABC的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
在銳角中,內(nèi)角對(duì)邊的邊長(zhǎng)分別是,且
(1)求角的值;
(2)若,的面積為,求的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com