給出下列四個命題:
①命題:“設a,b∈R,若ab=0,則a=0或b=0”的否命題是“設a,b∈R,若ab≠0,則a≠0且b≠0”; 
②將函數(shù)y=sin(2x+)的圖象上所有點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移個單位長度,得到函數(shù)y=cosx的圖象; 
③用數(shù)學歸納法證明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)時,從“k”到“k+1”的證明,左邊需增添的一個因式是2(2k+1); 
④函數(shù)f(x)=ex-x-1(x∈R)有兩個零點.
其中所有真命題的序號是   
【答案】分析:因為“設a,b∈R,若ab=0,則a=0或b=0”的否命題是“設a,b∈R,若ab≠0,則a≠0且b≠0”; 判斷出①對;
利用函數(shù)的圖象的平移變換規(guī)律判斷出 ②錯;
因為當n=k時,左邊=(k+1)(k+2)…(k+k);當n=k+1時左邊=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)判斷出③對;
通過導函數(shù)的符號,判斷出函數(shù)的單調(diào)性,進一步得到零點的個數(shù),判斷出④錯.
解答:解:對于①:“設a,b∈R,若ab=0,則a=0或b=0”的否命題是“設a,b∈R,若ab≠0,則a≠0且b≠0”; 故①對;
對于②,將函數(shù)y=sin(2x+)的圖象上所有點的橫坐標伸長為原來的2倍(縱坐標不變),再向右平移個單位長度,得到函數(shù)y=sinx的圖象; 故②錯;
對于③,當n=k時,左邊=(k+1)(k+2)…(k+k);當n=k+1時左邊=(k+2)(k+3)…(k+k)(k+k+1)(k+k+2)
所以左邊需增添的一個因式是2(2k+1); 故③對;
對于④,因為f′(x)=ex-1,當x>0時因f′(x)=ex-1>0,f(x)遞增;當x<0時,f′(x)=ex-1<0,函數(shù)f(x)遞減,又因為f(0)=0,所以f(x)只有一個零點,故④錯.
故答案為:①③
點評:解決圖象平移變換的問題,一定注意左右平移的單位是自變量x上加、減的數(shù)的絕對值,遵循左加右減的規(guī)律.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、已知a、b是兩條不重合的直線,α、β、γ是三個兩兩不重合的平面,給出下列四個命題:
①若a⊥α,a⊥β,則α∥β;
②若α⊥γ,β⊥γ,則α∥β;
③若α∥β,a?α,b?β,則a∥b;
④若α∥β,α∩γ=a,β∩γ=b,則a∥b.
其中正確命題的序號有
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=
1
x
的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
②函數(shù)y=x2-4x+6,當x∈[1,4]時,函數(shù)的值域為[3,6];
③函數(shù)y=3(x-1)2的圖象可由y=3x2的圖象向右平移1個單位得到;
④若函數(shù)f(x)的定義域為[0,2],則函數(shù)f(2x)的定義域為[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,則A∩B=A.
其中正確命題的序號是
③④⑤
③④⑤
.(填上所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將邊長為2,銳角為60°的菱形ABCD沿較短對角線BD折成二面角A-BD-C,點E,F(xiàn)分別為AC,BD的中點,給出下列四個命題:
①EF∥AB;②直線EF是異面直線AC與BD的公垂線;③當二面角A-BD-C是直二面角時,AC與BD間的距離為
6
2
;④AC垂直于截面BDE.
其中正確的是
②③④
②③④
(將正確命題的序號全填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題,其中正確的命題的個數(shù)為( 。
①命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函數(shù)y=tan
x
2
的對稱中心為(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;
②函數(shù)y=x3與y=3x的值域相同;
③函數(shù)y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函數(shù);
④函數(shù)y=(x-1)2與y=2x-1在區(qū)間[0,+∞)上都是增函數(shù),其中正確命題的序號是(  )

查看答案和解析>>

同步練習冊答案