1.已知x,y滿(mǎn)足$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$,記z=2x-y的最大值為m,則函數(shù)y=ax-1+m(a>0且a≠1)的圖象所過(guò)定點(diǎn)坐標(biāo)為(1,3).

分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)求出m,再由函數(shù)的圖象平移求得函數(shù)y=ax-1+m(a>0且a≠1)的圖象所過(guò)定點(diǎn)坐標(biāo).

解答 解:由約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y-4≤0}\\{x-y≤0}\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x-y=0}\\{x+y=4}\end{array}\right.$,解得B(2,2),
化目標(biāo)函數(shù)z=2x-y為y=2x-z,
由圖可知,當(dāng)直線y=2x-z過(guò)B時(shí),直線在y軸上的截距最小,z有最大值為2×2-2=2.
即m=2,
∴函數(shù)y=ax-1+m=ax-1+2,
∵y=ax或定點(diǎn)(0,1),
∴y=ax-1+2過(guò)定點(diǎn)為(1,3).
故答案為:(1,3).

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,考查了函數(shù)圖象的平移,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知橢圓x2+$\frac{{y}^{2}}{9}$=1的上、下兩個(gè)焦點(diǎn)分別為F,F(xiàn)′.G是橢圓上任意一點(diǎn),已知橢圓的上頂點(diǎn)為A.下頂點(diǎn)為A′.左頂點(diǎn)為B.右頂點(diǎn)為B′.若點(diǎn)M為AB的中點(diǎn).則|GM|+|GF′|的最大值(  )
A.6+$\sqrt{3}$B.6-$\sqrt{3}$C.6+$\frac{\sqrt{42-24\sqrt{2}}}{2}$D.6-$\frac{\sqrt{42-24\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)$f(x)=-\frac{1}{2}{({x-2})^2}+alnx$在(1,+∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A..[-1,+∞)B.(-∞,-1]C.(1,+∞)D..(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合$A=\left\{{y\left|{y={{log}_2}x}\right.}\right\},B=\left\{{y\left|{y={{(\frac{1}{2})}^x}}\right.}\right\}$,則( 。
A.A?BB.B?AC.A∩B=ΦD.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={0,1,2,3,4,5},B={x|x2-7x+10<0},則A∩B的子集可以是(  )
A.{3,4,5}B.{4,5}C.{3,5}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,若a=7,b=8,cosC=$\frac{13}{14}$,求最大角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=x2+2x|x-a|,其中a∈R.
(1)當(dāng)a=-1,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若不等式f(x)≥3在x∈[1,3]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),他們?cè)谂嘤?xùn)期間8次模擬考試的成績(jī)?nèi)缦拢?br />甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫(huà)出甲、乙兩位學(xué)生成績(jī)的莖葉圖,并求學(xué)生乙成績(jī)的平均數(shù)和方差;
(2)從甲同學(xué)超過(guò)80分的6個(gè)成績(jī)中任取兩個(gè),求這兩個(gè)成績(jī)中至少有一個(gè)超過(guò)90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直線l1:x+2my-1=0與l2:(3m-1)x-my-1=0平行,則實(shí)數(shù)m的值為( 。
A.0B.$\frac{1}{6}$C.0或$\frac{1}{6}$D.0或$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案