(本題滿分14分)

設(shè)函數(shù)

(1)求函數(shù)極值;

(2)當(dāng)恒成立,求實數(shù)a的取值范圍.

 

【答案】

(1)f極大=f(—1)=—4.  f極小=f(—)=;(2)a的范圍為

【解析】本題考查利用導(dǎo)數(shù)研究函數(shù)的極值以及由函數(shù)恒成立的問題求參數(shù)的取值范圍,求解本題關(guān)鍵是記憶好求導(dǎo)的公式以及極值的定義,對于函數(shù)的恒成立的問題求參數(shù),要注意正確轉(zhuǎn)化,恰當(dāng)?shù)霓D(zhuǎn)化可以大大降低解題難度.

(Ⅰ)先求出函數(shù)的導(dǎo)數(shù),再令導(dǎo)數(shù)大于0求出單調(diào)增區(qū)間,導(dǎo)數(shù)小于0求出函數(shù)的減區(qū)間,再由極值的定義判斷出極值即可;

(2)設(shè)F(x)=f(x)—g(x)=x3+(2—a)x2+4

利用不等式恒成立構(gòu)造新函數(shù),求解函數(shù)的最值得到結(jié)論。

解:(1)∵f(x)=x3+2x2+x­—4

=3x2+4x+1,…………………………2分

=0,得x1= —1,x2= —.

 

x

(-∞,-1)

-1

(-1,-

(-,+∞)

+

0

0

+

極大

極小

∴f極大=f(—1)=—4.  f極小=f(—)=…………………………6分

(2)設(shè)F(x)=f(x)—g(x)=x3+(2—a)x2+4

 

解得a≤5    ∴2<a≤5………10分,當(dāng)x=0時,F(xiàn)(x)=4

∴a的范圍為…………14分

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分
A.選修4-4:極坐標(biāo)與參數(shù)方程在極坐標(biāo)系中,直線l 的極坐標(biāo)方程為θ=
π
3
(ρ∈R ),以極點為坐標(biāo)原點,極軸為x軸的正半軸建立平面直角坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosα
y=1+cos2α
(α 參數(shù)).求直線l 和曲線C的交點P的直角坐標(biāo).
B.選修4-5:不等式選講
設(shè)實數(shù)x,y,z 滿足x+y+2z=6,求x2+y2+z2 的最小值,并求此時x,y,z 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AEEBBC=2,上的點,且BF⊥平面ACE

(1)求證:AEBE;(2)求三棱錐DAEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}

(Ⅰ)若AB=[0,3],求實數(shù)m的值

(Ⅱ)若ACRB,求實數(shù)m的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題

(本題滿分14分)

已知點是⊙上的任意一點,過垂直軸于,動點滿足

(1)求動點的軌跡方程; 

(2)已知點,在動點的軌跡上是否存在兩個不重合的兩點,使 (O是坐標(biāo)原點),若存在,求出直線的方程,若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題

(本題滿分14分)已知函數(shù).

(1)求函數(shù)的定義域;

(2)判斷的奇偶性;

(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使

;如果沒有,請說明理由?(注:區(qū)間的長度為).

 

查看答案和解析>>

同步練習(xí)冊答案