【題目】如圖,四棱錐的底面是直角梯形,,,和是兩個邊長為2的正三角形,,為的中點,為的中點.
(1)證明:平面.
(2)在線段上是否存在一點,使直線與平面所成角的正弦值為?若存在,求出點的位置;若不存在,說明理由.
【答案】(1)見解析;(2)當時,直線與平面所成角的正弦值為.
【解析】
(1)設為的中點,連接,,證明OE為三角形BPF的中位線,得即可證明(2)證明平面,由,過分別作,的平行線,分別以它們作為軸,以為軸建立如圖所示的空間直角坐標系,求平面的法向量,假設線段上存在一點,設,得,由直線與平面所成角的正弦值為列的方程求解即可
(1)證明:設為的中點,連接,,則.
∵,,,
∴四邊形為正方形.
∵為的中點,∴為,的交點,
∴為的中點,即OE為三角形BPF的中位線
∴.
∵平面,平面,
∴平面.
(2)∵,為的中點,
∴.∵,∴,
∴,.
在中,,∴.
又∵,∴平面.
又因為,所以過分別作,的平行線,分別以它們作為軸,
以為軸建立如圖所示的空間直角坐標系,
則,,,.
假設線段上存在一點,使直線與平面所成角的正弦值為.
設,則,
即.
設平面的一個法向量為,則,即.
取,得平面的一個法向量為.
設直線與平面所成角為,令,
得,
化簡并整理得,解得(舍去),或.
所以,當時,直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,直平行六面體的所有棱長都為2,,過體對角線的截面S與棱和分別交于點E、F,給出下列命題中:
①四邊形的面積最小值為;
②直線EF與平面所成角的最大值為;
③四棱錐的體積為定值;
④點到截面S的距離的最小值為.
其中,所有真命題的序號為( )
A.①②③B.①③④C.①③D.②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了加強環(huán)保建設,提高社會效益和經濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車.每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動力型車.今年初投入了電力型公交車120輛,混合動力型公交車300輛,計劃以后電力型車每年的投入量比上一年增加,混合動力型車每年比上一年多投入輛.設,分別為第年投入的電力型公交車,混合動力型公交車的數(shù)量,設,分別為年里投入的電力型公交車,混合動力型公交車的總數(shù)量.
(1)求,,并求年里投入的所有新公交車的總數(shù);
(2)該市計劃用8年的時間完成全部更換,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】產能利用率是指實際產出與生產能力的比率,工r產能利用率是衡量工業(yè)生產經營狀況的重要指標.下圖為國家統(tǒng)計局發(fā)布的2015年至2018年第2季度我國工業(yè)產能利用率的折線圖.
在統(tǒng)計學中,同比是指本期統(tǒng)計數(shù)據(jù)與上一年同期統(tǒng)計數(shù)據(jù)相比較,例如2016年第二季度與2015年第二季度相比較;環(huán)比是指本期統(tǒng)計數(shù)據(jù)與上期統(tǒng)計數(shù)據(jù)相比較,例如2015年第二季度與2015年第一季度相比較.
據(jù)上述信息,下列結論中正確的是( ).
A. 2015年第三季度環(huán)比有所提高B. 2016年第一季度同比有所提高
C. 2017年第三季度同比有所提高D. 2018年第一季度環(huán)比有所提高
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個總體容量為60,其中的個體編號為00,01,02,…,59.現(xiàn)需從中抽取一個容量為7的樣本,請從隨機數(shù)表的倒數(shù)第5行(下表為隨機數(shù)表的最后5行)第11~12列的18開始,依次向下,到最后一行后向右,直到取足樣本,則抽取樣本的號碼是_____________.
95 33 95 22 00 18 74 72 00 18 46 40 62 98 80 54 97 20 56 95
38 79 58 69 32 81 76 80 26 92 15 74 80 08 32 16 46 70 50 80
82 80 84 25 39 90 84 60 79 80 67 72 16 42 79 71 59 73 05 50
24 36 59 87 38 82 07 53 89 35 08 22 23 71 77 91 01 93 20 49
96 35 23 79 18 05 98 90 07 35 82 96 59 26 94 66 39 67 98 60
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在長方體ABCD-A1B1C1D1中,底面ABCD為正方形,AA1=2,AB=1,E為AD中點,F為CC1中點.
(1)求證:AD⊥D1F;
(2)求證:CE//平面AD1F;
(3)求AA1與平面AD1F成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某手機廠商在銷售某型號手機時開展“手機碎屏險”活動.用戶購買該型號手機時可選購“手機碎屏險”,保費為元,若在購機后一年內發(fā)生碎屏可免費更換一次屏幕,為了合理確定保費的值,該手機廠商進行了問卷調查,統(tǒng)計后得到下表(其中表示保費為元時愿意購買該“手機碎屏險”的用戶比例):
(1)根據(jù)上面的數(shù)據(jù)計算得,求出關于的線性回歸方程;
(2)若愿意購買該“手機碎屏險”的用戶比例超過,則手機廠商可以獲利,現(xiàn)從表格中的種保費任取種,求這種保費至少有一種能使廠商獲利的概率.
附:回歸方程中斜率和截距的最小二乘估計分別為,
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com