A. | 30° | B. | 60° | C. | 90° | D. | 120° |
分析 進行數量積的坐標運算,由$\overrightarrow{m}•\overrightarrow{n}=0$得出$\sqrt{3}cosA=sinA$,從而求出$tanA=\sqrt{3}$,進而得出A=60°,由正弦定理及acosB+bcosA=csinC即可得到sin(A+B)=sin2C,進而得到sinC=sin2C,從而可求出C的值,這樣即可得出B的值.
解答 解:$\overrightarrow{m}•\overrightarrow{n}=\sqrt{3}cosA-sinA=0$;
∴$\sqrt{3}cosA=sinA$;
∴$tanA=\sqrt{3}$;
∵0<A<180°;
∴A=60°;
根據正弦定理,a=2RsinA,b=2RsinB,c=2RsinC,代入acosB+bcosA=csinC得:
2RsinAcosB+2RcosAsinB=2Rsin2C;
∴sinAcosB+cosBsinA=sin2C;
∴sin(A+B)=sin2C;
∴sinC=sin2C;
∴sinC=1,或sinC=0;
∵0°<C<180°;
∴C=90°;
∴B=30°.
故選A.
點評 考查數量積的坐標運算,弦化切公式,正弦定理,以及兩角和的正弦公式.
科目:高中數學 來源: 題型:選擇題
A. | f(x)=2x | B. | f(x)=-$\frac{1}{x}$ | C. | f(x)=log2|x| | D. | f(x)=-x2+1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 存在x0>0,使得x2≤0 | B. | 若x≤0,則x2≤0 | ||
C. | 若x>0,則x2≤0 | D. | 存在x0>0,使得x2<0 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0.56 | B. | 0.92 | C. | 0.94 | D. | 0.96 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 10$\sqrt{2}$ | B. | 5$\sqrt{2}$ | C. | 5$\sqrt{6}$ | D. | $\frac{10\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
等級 | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 15 | x | 5 |
女生(人) | 15 | 3 | y |
男生 | 女生 | 總計 | |
優(yōu)秀 | 15 | 15 | 30 |
非優(yōu)秀 | 10 | 5 | 15 |
總計 | 25 | 20 | 45 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com