【題目】若四面體ABCD的三組對(duì)棱分別相等,即AB=CD,AC=BD,AD=BC,則下列結(jié)論正確的是( )
A.四面體ABCD每組對(duì)棱相互垂直
B.四面體ABCD每個(gè)面的面積相等
C.從四面體ABCD每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角之和大于90°且小于180°
D.連接四面體ABCD每組對(duì)棱中點(diǎn)的線段相互垂直平分
【答案】BD
【解析】
對(duì)AD,將該四面體放入長(zhǎng)方體中進(jìn)行分析即可.
對(duì)B,利用全等判定即可.
對(duì)C,舉出反例即可.
對(duì)A,易得四面體可放入一個(gè)長(zhǎng)方體中,如圖.
若四面體每組對(duì)棱相互垂直,不妨設(shè),根據(jù)長(zhǎng)方體的性質(zhì)有,則長(zhǎng)方體側(cè)面矩形為正方形,這不一定成立,故A錯(cuò)誤.
對(duì)B,因?yàn)樵撍拿骟w每組對(duì)邊均相等.故側(cè)面的三角形三邊分別相等,即側(cè)面三角形為全等三角形.故每個(gè)面的面積相等.故B正確.
對(duì)C,若四面體為正四面體,則從四面體每個(gè)頂點(diǎn)出發(fā)的三條棱兩兩夾角均為,則和為,故C錯(cuò)誤.
對(duì)D, 根據(jù)長(zhǎng)方體的對(duì)稱性可知, 四面體每組對(duì)棱中點(diǎn)的線段為長(zhǎng)方體中連接每組對(duì)面中心的線段,故這三條線段相互垂直平分且交于長(zhǎng)方體的中心.故D正確.
綜上,BD正確.
故選:BD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將4個(gè)編號(hào)為1、2、3、4的小球放人編號(hào)為1、2、3、4的盒子中.
(1)恰好有一個(gè)空盒,有多少種放法?
(2)每個(gè)盒子放一個(gè)球,且恰好有一個(gè)球的編號(hào)與盒子的編號(hào)相同,有多少種放法?
(3)把4個(gè)不同的小球換成4個(gè)相同的小球,恰有一個(gè)空盒,有多少種放法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)(x∈R),有下述四個(gè)結(jié)論:
①任意x∈R,等式f(﹣x)+f(x)=0恒成立;
②任意x1,x2∈R,若x1≠x2,則一定有f(x1)≠f(x2);
③存在m∈(0,1),使得方程|f(x)|=m有兩個(gè)不等實(shí)數(shù)根;
④存在k∈(1,+∞),使得函數(shù)g(x)=f(x)﹣kx在R上有三個(gè)零點(diǎn).
其中包含了所有正確結(jié)論編號(hào)的選項(xiàng)為( )
A.①②③④B.①②③C.①②④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的部分圖象如圖所示,則下列敘述正確的是( )
A.函數(shù)的圖象可由的圖象向左平移個(gè)單位得到
B.函數(shù)的圖象關(guān)于直線對(duì)稱
C.函數(shù)在區(qū)間上是單調(diào)遞增的
D.函數(shù)圖象的對(duì)稱中心為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙二人獨(dú)立破譯同一密碼,甲破譯密碼的概率為,乙破譯密碼的概率為.記事件A:甲破譯密碼,事件B:乙破譯密碼.
(1)求甲、乙二人都破譯密碼的概率;
(2)求恰有一人破譯密碼的概率;
(3)小明同學(xué)解答“求密碼被破譯的概率”的過程如下:
解:“密碼被破譯”也就是“甲、乙二人中至少有一人破譯密碼”所以隨機(jī)事件“密碼被破譯”可以表示為所以
請(qǐng)指出小明同學(xué)錯(cuò)誤的原因?并給出正確解答過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù))
(1)求的單調(diào)遞減區(qū)間;
(2)若函數(shù),證明在上只有兩個(gè)零點(diǎn).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年,“非典”爆發(fā),以鐘南山為代表的醫(yī)護(hù)工作者經(jīng)長(zhǎng)期努力,抗擊了非典.年歲高齡的鐘院士再次披掛上陣,逆行武漢抗擊新冠疫情。為調(diào)查中學(xué)生對(duì)這一偉大“逆行者”的了解程度,某調(diào)查小組隨機(jī)抽取了某市物化生、政史地的名高中生,請(qǐng)他們列舉鐘南山院士在醫(yī)學(xué)上的成就,把能列舉鐘南山成就不少于項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”他們的調(diào)查結(jié)果如下:
組合 | 0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 |
物化生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
政史地(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整;
組合 | 比較了解 | 不太了解 | 合計(jì) |
物化生 | |||
政史地 | |||
合計(jì) |
(2)判斷是否有99%的把握認(rèn)為,了解鐘南山與選擇物化生、政史地組合有關(guān)?
參考:.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞減;
③函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
④當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;
⑤當(dāng)x=時(shí),函數(shù)y=f(x)有極大值.
則上述判斷中正確的是( )
A. ①② B. ②③
C. ③④⑤ D. ③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來我國(guó)電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇,與此同時(shí),相關(guān)管理部門推出了針對(duì)電商商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品好評(píng)率為,對(duì)服務(wù)好評(píng)率為,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.
(1)是否可以在犯錯(cuò)誤率不超過0.1%的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若針對(duì)商品的好評(píng)率,采用分層抽樣的方式這200次交易中取出5次交易,并從中選擇兩次交易進(jìn)行客戶回訪,求只有一次好評(píng)的概率.
注:1.
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:2.,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com