【題目】已知在平面直角坐標系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點為極點,x軸的正半軸為極軸建立極坐標系,求橢圓C的極坐標方程;
(2)設(shè)M(x,y)為橢圓C上任意一點,求x+2y的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)滿足如下四個條件:
①定義域為;
②;
③當(dāng)時,;
④對任意滿足.
根據(jù)上述條件,求解下列問題:
⑴求及的值.
⑵應(yīng)用函數(shù)單調(diào)性的定義判斷并證明的單調(diào)性.
⑶求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點列{An}、{Bn}分別在銳角兩邊(不在銳角頂點),且|AnAn+1|=|An+1An+2|,An≠An+2 , |BnBn+1|=|Bn+1Bn+2|,Bn≠Bn+1 , n∈N*(P≠Q(mào)表示點P與Q不重合),若dn=|AnBn|,Sn為△AnBnBn+1的面積,則( )
A.{dn}是等差數(shù)列
B.{Sn}是等差數(shù)列
C.{d }是等差數(shù)列
D.{S }是等差數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,且a≠1,則雙曲線C1: ﹣y2=1與雙曲線C2: ﹣x2=1的( )
A.焦點相同
B.頂點相同
C.漸近線相同
D.離心率相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) 的定義域是R,對于任意實數(shù) ,恒有,且當(dāng) 時, 。
(1)求證: ,且當(dāng) 時,有 ;
(2)判斷 在R上的單調(diào)性;
(3)設(shè)集合A=,B=,若A∩B=,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓右焦點,離心率為,過作兩條互相垂直的弦,設(shè)中點分別為.
(1)求橢圓的方程;
(2) 證明:直線必過定點,并求出此定點坐標;
(3) 若弦的斜率均存在,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)f(x)= sin2x﹣ cos2x+1的圖象向左平移 個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說法錯誤的是( )
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=
C. g(x)dx=
D.函數(shù)y=g(x)在區(qū)間[ , ]上單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某一等差數(shù)列的首項為,公差為展開式中的常數(shù)項,其中是除以19的余數(shù),則此數(shù)列前多少項的和最大?并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為提高員工的綜合素質(zhì),聘請專業(yè)機構(gòu)對員工進行專業(yè)技術(shù)培訓(xùn),其中培訓(xùn)機構(gòu)費用成本為12000元.公司每位員工的培訓(xùn)費用按以下方式與該機構(gòu)結(jié)算:若公司參加培訓(xùn)的員工人數(shù)不超過30人時,每人的培訓(xùn)費用為850元;若公司參加培訓(xùn)的員工人數(shù)多于30人,則給予優(yōu)惠:每多一人,培訓(xùn)費減少10元.已知該公司最多有60位員工可參加培訓(xùn),設(shè)參加培訓(xùn)的員工人數(shù)為人,每位員工的培訓(xùn)費為元,培訓(xùn)機構(gòu)的利潤為元.
(1)寫出與 之間的函數(shù)關(guān)系式;
(2)當(dāng)公司參加培訓(xùn)的員工為多少人時,培訓(xùn)機構(gòu)可獲得最大利潤?并求最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com