3.已知f(x)是定義在(-1,1)上的偶函數(shù),當(dāng)x∈[0,1)時f(x)=lg$\frac{1}{1+x}$,
(1)求f(x)的解析式;
(2)探求f(x)的單調(diào)區(qū)間,并證明f(x)的單調(diào)性.

分析 (1)根據(jù)f(x)是定義在(-1,1)上的偶函數(shù),當(dāng)x∈[0,1)時f(x)=lg$\frac{1}{1+x}$,求出x∈(-1,0)時函數(shù)的解析式,綜合可得答案;
(2)f(x)在[0,1)上單調(diào)遞減,在(-1,0)單調(diào)遞增,利用導(dǎo)數(shù)法可證得結(jié)論.

解答 解:(1)設(shè)x∈(-1,0),則-x∈(0,1),
∴f(-x)=lg$\frac{1}{1-x}$,
∵f(x)是定義在(-1,1)上的偶函數(shù),
∴f(x)=f(-x)=lg$\frac{1}{1-x}$,
綜上可得:f(x)=$\left\{\begin{array}{l}lg\frac{1}{1-x},x∈(-1,0)\\ lg\frac{1}{1+x},x∈[0,1)\end{array}\right.$;
(2)f(x)在[0,1)上單調(diào)遞減,在(-1,0)單調(diào)遞增.證明如下:
∵f′(x)=$\left\{\begin{array}{l}\frac{1}{ln10•(1-x)},x∈(-1,0)\\ \frac{-1}{ln10•(1+x)},x∈[0,1)\end{array}\right.$,
當(dāng)x∈(-1,0)時,f′(x)>0恒成立,
當(dāng)x∈[0,1),f′(x)<0恒成立,
故f(x)在[0,1)上單調(diào)遞減,在(-1,0)單調(diào)遞增.

點(diǎn)評 本題考查的知識點(diǎn)是利用導(dǎo)數(shù)法研究函數(shù)的單調(diào)性,函數(shù)的奇偶性,函數(shù)解析式的求法,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.?dāng)?shù)列{an}中,a1=1,前n項(xiàng)和是Sn,Sn=2an-1,n∈N*
(1)求a2,a3,a4;
(2)求通項(xiàng)公式an
(3)求證:SnSn+2<Sn+12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{kx-1,x≤0}\\{{2}^{-x}-1,x>0}\end{array}\right.$,(k<0),當(dāng)方程f[f(x)]=-$\frac{1}{2}$恰有三個實(shí)數(shù)根時,實(shí)數(shù)k的取值范圍為( 。
A.(-$\frac{1}{2}$,0)B.[-$\frac{1}{2}$,0)C.(-∞,-$\frac{1}{2}$]D.(-∞,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在等差數(shù)列{an}中,a4+a5+a6+a7=56,a4•a7=187,求a1和d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若x,y滿足$\left\{\begin{array}{l}x+y≤4\\ x-2y≥0\\ x+2y≥4\end{array}$則z=$\frac{y-4}{x}$的取值范圍是(  )
A.$(-∞,-\frac{3}{2}]∪[-1,+∞)$B.$(-∞,-\frac{5}{2}]∪[-1,+∞)$C.$[-\frac{5}{2},-\frac{3}{2}]$D.$[-\frac{3}{2},-1]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在△ABC中,tan2$\frac{A}{2}$+tan2$\frac{B}{2}$+tan2$\frac{C}{2}$的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{3x-b(x<1)}\\{{3}^{x}(x≥1)}\end{array}\right.$,若$f(f(\frac{1}{2}))=9$,則實(shí)數(shù)b的值為(  )
A.$-\frac{3}{2}$B.$-\frac{9}{8}$C.$-\frac{3}{4}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知四邊形BCD和BCEG均為直角梯形,AD∥EG、CE∥BG,且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCEG,BC=2AD,CE=2BG.求證:
(Ⅰ)EC⊥CD;
(Ⅱ)求證:AG∥平面BDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={1,3,$\sqrt{3}$},B={1,m},A∪B=A,則m=( 。
A.0或$\sqrt{3}$B.0或3C.3或$\sqrt{3}$D.1或3

查看答案和解析>>

同步練習(xí)冊答案