18.已知冪函數(shù)f(x)=xα(α為常數(shù))的圖象過點(diǎn)$P({2,\frac{1}{2}})$,則f(x)的單調(diào)遞減區(qū)間是( 。
A.(-∞,0)B.(-∞,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)與(0,+∞)

分析 由題意代入點(diǎn)的坐標(biāo)可求得α=-1;從而寫出單調(diào)區(qū)間.

解答 解:由題意得:2α=$\frac{1}{2}$,則α=-1;
則y=f(x)=x-1,
函數(shù)的單調(diào)遞減區(qū)間是(-∞,0),(0,+∞);
故選:D.

點(diǎn)評 本題考查了冪函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖,F(xiàn)1,F(xiàn)2分別是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點(diǎn),過F1的直線l與雙曲線分別交于點(diǎn)A,B,且A(1,$\sqrt{3}$),若△ABF2為等邊三角形,則△BF1F2的面積為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=$\sqrt{2-{2}^{x}}$+lnx的定義域?yàn)椋?,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在長方體ABCD-A1B1C1D1中,AB=$\sqrt{3}$,AA1=2,AD=1,E、F分別是AA1和BB1的中點(diǎn),G是DB上的點(diǎn),且DG=2GB.
(I)作出長方體ABCD-A1B1C1D1被平面EB1C所截的截面(只需作出,說明結(jié)果即可);
(II)求證:GF∥平面EB1C;
(III)設(shè)長方體ABCD-A1B1C1D1被平面EB1C所截得的兩部分幾何體體積分別為V1、V2(V1>V2),求$\frac{{V}_{2}}{{V}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.動點(diǎn)P在直線x+y-4=0上,動點(diǎn)Q在直線x+y=8上,則|PQ|的最小值為( 。
A.$\sqrt{10}$B.2$\sqrt{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知x∈R,用[x]表示不超過x的最大整數(shù),記{x}=x-[x],若a∈(0,1),且$\{a\}>\{a+\frac{1}{3}\}$,則實(shí)數(shù)a的取值范圍是[$\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=ex+2(x<0)與g(x)=ln(x+a)+2的圖象上存在關(guān)于y軸對稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,e)B.(0,e)C.(e,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=x2+ln|x|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知集合A={-1,0},B={0,2},則A∪B={-1,0,2}.

查看答案和解析>>

同步練習(xí)冊答案