精英家教網 > 高中數學 > 題目詳情

已知函數對任意的恒成立,

      .

 

【答案】

【解析】因為f(x)是R上的增函數,所以

,令,由題意知.

.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知f(x)是二次函數,f′(x)是它的導函數,且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t).求S(t)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a,b,c∈R且a≠0),f′(x)是它的導函數,且對任意的x∈R,f′(x)=f(x+1)+x2恒成立.
(1)求f(x)的解析表達式;
(2)設t>0,曲線C:y=f(x)在點P(t,f(t))處的切線為l,l與坐標軸圍成的三角形面積為S(t),求S(t)的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•寶山區(qū)一模)已知函數f(x)=log2x,若2,f(a1),f(a2),f(a3),…,f(an),2n+4,…,(n∈N*)成等差數列.
(1)求數列{an}(n∈N*)的通項公式;
(2)設g(k)是不等式log2x+log2(3
ak
-x
)≥2k+3(k∈N*)整數解的個數,求g(k);
(3)記數列{
12
an
}
的前n項和為Sn,是否存在正數λ,對任意正整數n,k,使Sn
ak
<λ2恒成立?若存在,求λ的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
ax2+bx+c
x+d
(其中a,b,c,d是實數常數,x≠-d)
(1)若a=0,函數f(x)的圖象關于點(-1,3)成中心對稱,求b,d的值;
(2)若函數f(x)滿足條件(1),且對任意x0∈[3,10],總有f(x0)∈[3,10],求c的取值范圍;
(3)若b=0,函數f(x)是奇函數,f(1)=0,f(-2)=-
3
2
,且對任意x∈[1,+∞)時,不等式f(mx)+mf(x)恒成立,求負實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2012屆天津市高三第一次月考理科數學試卷 題型:解答題

已知是二次函數,是它的導函數,且對任意的恒成立

(Ⅰ)求的解析式;

(Ⅱ)設,曲線在點處的切線為與坐標軸圍成的三角形面積為,求的最小值。

 

查看答案和解析>>

同步練習冊答案