如圖,為了得到這個函數(shù)的圖象,只要將的圖象上所有的點( 。

A. 向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

B. 向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

C. 向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變

D. 向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

 

【答案】

A

【解析】

試題分析:先根據(jù)函數(shù)的周期和振幅確定w和A的值,再代入特殊點可確定φ的一個值,進(jìn)而得到函數(shù)的解析式,再進(jìn)行平移變換即可。那么由圖象可知函數(shù)的周期為π,振幅為1,所以函數(shù)的表達(dá)式可以是y=sin(2x+φ).代入(-,0)可得φ的一個值為,故圖象中函數(shù)的一個表達(dá)式是y=sin(2x+),即y=sin2(x+),所以只需將y=sinx(x∈R)的圖象上所有的點向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變.故選A.

考點:本試題主要考查了三角函數(shù)的圖象與圖象變換的基礎(chǔ)知識,屬于基礎(chǔ)題題。

點評:解決該試題的關(guān)鍵是根據(jù)圖象求函數(shù)的表達(dá)式時,一般先求周期、振幅,最后求φ.三角函數(shù)圖象進(jìn)行平移變換時注意提取x的系數(shù),進(jìn)行周期變換時,需要將x的系數(shù)變?yōu)樵瓉淼?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/2013011313230783962408/SYS201301131323430115942175_DA.files/image004.png">。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=Asin(ωx+φ)(A<0,ω>0,|φ|≤
π
2
)圖象的一部分.為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( 。
A、向左平移
π
3
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
B、向左平移
π
3
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的
1
2
倍,縱坐標(biāo)不變
D、向左平移
π
6
個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=Asin(ωx+?)(x∈R,A>0,ω>0,0<?<
π
2
)在區(qū)間[-
π
6
,
6
]
上的圖象,為了得到這個函數(shù)的圖象,只需將y=sinx(x∈R)的圖象上的所有的點(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市東城區(qū)宏志中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

如為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
B.向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
D.向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年山東省聊城市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

如為了得到這個函數(shù)的圖象,只要將y=sinx(x∈R)的圖象上所有的點( )
A.向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
B.向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
C.向左平移個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變
D.向左平移個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

同步練習(xí)冊答案