【題目】如圖所示,已知橢圓C1:+=1,C2:+=1(a>b>0)有相同的離心率,F(xiàn)(﹣ , 0)為橢圓C2的左焦點,過點F的直線l與C1、C2依次交于A、C、D、B四點.
(1)求橢圓C2的方程;
(2)求證:無論直線l的傾斜角如何變化恒有|AC|=|DB|
【答案】(1)解:橢圓C1:+=1的離心率為=,
對于C2:+=1(a>b>0)的c=,由條件得,=,則a=2,b=1,
則橢圓C2的方程為:+y2=1;
(2)證明:當(dāng)直線l垂直于x軸時,可得A(﹣,﹣),B(﹣,),C(﹣,﹣),D(﹣,)
即有|AC|=|BD|;
當(dāng)l不垂直于x軸時,設(shè)直線l:y=k(x),
由消去y,得(1+4k2)x2+8k2x+12k2﹣10=0,
由消去y,得(1+4k2)x2+8k2x+12k2﹣4=0,
設(shè)A(x1 , y1),B(x2 , y2),C(x3 , y3),D(x4 , y4),
則x1+x2=x3+x4=﹣,即有AB,CD的中點重合,則有|AC|=|BD|.
故無論直線l的傾斜角如何變化恒有|AC|=|DB|
【解析】(1)求得橢圓C1的離心率,再由離心率公式和a,b,c的關(guān)系,即可得到橢圓橢圓C2的方程;
(2)當(dāng)直線l垂直于x軸時,可得A,B,C,D的坐標(biāo),計算即可得到|AC|=|BD|;當(dāng)l不垂直于x軸時,設(shè)直線l:y=k(x),聯(lián)立橢圓方程,消去y,得到x的方程,運用韋達定理,再由中點坐標(biāo)即可得到|AC|=|BD|;
(3)若|AC|=1,由(2)得,|AB|=|CD|+2,當(dāng)直線l垂直于x軸時,不滿足題意;當(dāng)l不垂直于x軸時,設(shè)直線l:y=k(x),由(2)運用弦長公式,化簡整理,得到8k4﹣2k2﹣1=0,解方程即可得到.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生喜歡校內(nèi)、校外開展活動的情況,某中學(xué)一課外活動小組在學(xué)校高一年級進行了問卷調(diào)查,問卷共100道題,每題1分,總分100分,該課外活動小組隨機抽取了200名學(xué)生的問卷成績(單位:分)進行統(tǒng)計,將數(shù)據(jù)按,,,,分成五組,繪制的頻率分布直方圖如圖所示,若將不低于60分的稱為類學(xué)生,低于60分的稱為類學(xué)生.
(1)根據(jù)已知條件完成下面列聯(lián)表,能否在犯錯誤的概率不超過的前提下認(rèn)為性別與是否為類學(xué)生有關(guān)系?
類 | 類 | 合計 | |
男 | 110 | ||
女 | 50 | ||
合計 |
(2)將頻率視為概率,現(xiàn)在從該校高一學(xué)生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中類學(xué)生的人數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列、期望和方差.
參考公式:,其中.
參考臨界值:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為和(萬元),它們與投入資金(萬元)的關(guān)系有如下公式:,,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.
(Ⅰ)設(shè)對乙種產(chǎn)品投入資金(萬元),求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤最大,并求出最大總利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,三邊a,b,c所對的角分別為A,B,C,設(shè)函數(shù)f(x)=sin2x+cos2x,且f()=2.
(1)若acosB+bcosA=csinC,求角B的大。
(2)記g(λ)=|+λ|,若||=||=3,試求g(λ)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
滿足:或1(k=1,2,…,n-1).
對任意i,j,都存在s,t,使得,其中i,j,s,t∈{1,2,…,n}且兩兩不相等.
(I)若m=2,寫出下列三個數(shù)列中所有符合題目條件的數(shù)列的序號;
①1,1,1,2,2,2; ②1,1,1,1,2,2,2,2; ③1,1,1,1,1,2,2,2,2
(II)記.若m=3,求S的最小值;
(III)若m=2018,求n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(1-2x)(x2-2).
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)若直線y=4x+b是函數(shù)y=f(x)圖象的一條切線,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中:
①若,滿足,則的最大值為4;
②若,則函數(shù)的最小值為3;
③若,滿足,則的最大值為;
④若,滿足,則的最小值為2;
⑤函數(shù)的最小值為9.
正確的有________.(把你認(rèn)為正確的序號全部寫上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax4lnx+bx4﹣c(x>0)在x=1處取得極值﹣3﹣c,其中a,b,c為常數(shù).
(1)試確定a,b的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)若對任意x>0,不等式f(x)≥﹣2c2恒成立,求c的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com