如圖,直三棱柱的底面是等腰直角三角形,,側(cè)棱底面,且的中點(diǎn).
(1)求直三棱柱的全面積;
(2)求異面直線所成角的大小(結(jié)果用反三角函數(shù)表示);

(1),(2).

解析試題分析:(1)直三棱柱的全面積為兩個(gè)底面三角形面積與側(cè)面積之和. 底面是等腰直角三角形,其面積為,側(cè)面展開(kāi)圖為矩形,其面積為,∴(2)求異面直線所成角,關(guān)鍵在于利用平行,將所求角轉(zhuǎn)化為某一三角形中的內(nèi)角.因?yàn)闂l件有中點(diǎn),所以從中位線上找平行. 取的中點(diǎn),連,則,即即為異面直線所成的角.分別求出三角形三邊,再利用余弦定理求角. ,,,.
解:(1)   (2分)
   (4分)
   (6分)

(2)取的中點(diǎn),連,則,即即為異面直線所成的角. (2分)
.
中,由,

中,由, (4分)
中,
   (6分)
考點(diǎn):三棱柱的全面積,平移求線線角

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的多面體中,是菱形,是矩形,,
(1)求證:.
(2)若

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知正方體的棱長(zhǎng)為
(1)求四面體的左視圖的面積;
(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知正△ABC的邊長(zhǎng)為, CD是AB邊上的高,E、F分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖所示.                    
(1)試判斷折疊后直線AB與平面DEF的位置關(guān)系,并說(shuō)明理由;
(2)若棱錐E-DFC的體積為,求的值;
(3)在線段AC上是否存在一點(diǎn)P,使BP⊥DF?如果存在,求出的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱錐中,平面平面,于點(diǎn),且,, 
(1)求證:
(2)
(3)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點(diǎn)E在線段AD上,且CE∥AB.
(1)求證:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在四棱錐中,底面為正方形,
平面,已知,為線段的中點(diǎn).
(1)求證:平面;
(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.四邊形都是邊長(zhǎng)為的正方形,點(diǎn)的中點(diǎn),平面.

(1)求證:平面平面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下圖(右)實(shí)線圍成的部分是長(zhǎng)方體(左)的平面展開(kāi)圖,其中四邊形ABCD是邊長(zhǎng)為的正方形.若向虛線圍成的矩形內(nèi)任意拋擲一質(zhì)點(diǎn),它落在長(zhǎng)方體的平面展開(kāi)圖內(nèi)的概率是,則此長(zhǎng)方體的體積是        .  

查看答案和解析>>

同步練習(xí)冊(cè)答案