精英家教網(wǎng)已知長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,點(diǎn)M是棱D1C1的中點(diǎn).
(1)試用反證法證明直線(xiàn)AB1與BC1是異面直線(xiàn);
(2)求直線(xiàn)AB1與平面DA1M所成的角(結(jié)果用反三角函數(shù)值表示).
分析:(1)假設(shè)直線(xiàn)AB1與BC1不是異面直線(xiàn),它們都在平面α上,推出平面ABB1A1和平面BCC1B1重合,這是矛盾,
(2)求出平面的一個(gè)法向量,直線(xiàn)和平面所成的角的余弦值等于直線(xiàn)與平面的法向量夾角的正弦值.
解答:精英家教網(wǎng)證明:(1)(反證法)假設(shè)直線(xiàn)AB1與BC1不是異面直線(xiàn).(1分)
設(shè)直線(xiàn)AB1與BC1都在平面α上,則A、B、B1、C1∈α.(3分)
因此,平面ABB1A1、平面BCC1B1都與平面α有不共線(xiàn)的三個(gè)公共點(diǎn),
即平面ABB1A1和平面BCC1B1重合(都與平面α重合).又長(zhǎng)方體的相鄰兩個(gè)面不重合,這是矛盾,
于是,假設(shè)不成立.(6分)
所以直線(xiàn)AB1與BC1是異面直線(xiàn).(7分)
解:(2)按如圖所示建立空間直角坐標(biāo)系,
可得有關(guān)點(diǎn)的坐標(biāo)為D(0,0,0)、
A(4,0,0)、B(4,2,0),C(0,2,0),A1(4,0,4),B1(4,2,4),C1(0,2,4),D1(0,0,4).于是,M(0,1,4),
DM
=(0,1,4),
DA1
=(4,0,4),
AB1
=(0,2,4)
.(9分)

設(shè)平面DA1M的法向量為
n 
=(x,y,z)
,則
n 
DM
=0
n 
DA1
=0
,即
y+4z=0
4x+4z=0

取z=-1,得x=1,y=4.(11分)
所以平面DA1M的一個(gè)法向量為
n 
=(1,4,-1)

記直線(xiàn)AB1與平面DA1M所成角為θ,于是,sinθ=|
n 
AB1 
|
n 
|•|
AB1
|
|=
10
15
,θ=arcsin
10
15
.(13分)
所以,直線(xiàn)AB1與平面DA1M所成角為θ=arcsin
10
15
.(14分)
點(diǎn)評(píng):本題考查用反證法證明2條直線(xiàn)是異面直線(xiàn)、及用向量法求直線(xiàn)和平面的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,點(diǎn)E是B1C1的中點(diǎn),點(diǎn)F在A(yíng)B上,建立空間直角坐標(biāo)系如圖所示.
(1)求
AE
的坐標(biāo)及長(zhǎng)度;
(2)求點(diǎn)F的坐標(biāo),使直線(xiàn)DF與AE的夾角為90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1中,M、N分別是BB1和BC的中點(diǎn),AB=4,AD=2,BB1=2
15
,求異面直線(xiàn)B1D與MN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知長(zhǎng)方體ABCD-A1B1C1D1,AB=BC=1,BB1=2,連接B1C,過(guò)B點(diǎn)作B1C.
的垂線(xiàn)交CC1于E,交B1C于F.
(I)求證:A1C⊥平面EBD;
(Ⅱ)求直線(xiàn)DE與平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)方體ABCD-A1B1C1D1,下列向量的數(shù)量積一定不為0的是( 。
精英家教網(wǎng)
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步練習(xí)冊(cè)答案