分析 設|PF1|=m,|PF2|=n,則$\frac{m}{2n}$=$\frac{a}{c}$,m+n=2a,化為m=$\frac{4a}{e+2}$,又a-c≤m≤a+c,化為$1-e≤\frac{4}{e+2}$≤1+e,0<e<1.解出即可得出.
解答 解:設|PF1|=m,|PF2|=n,
則$\frac{m}{2n}$=$\frac{a}{c}$,m+n=2a,
化為m=$\frac{4a}{e+2}$,
又a-c≤m≤a+c,
∴a-c≤$\frac{4a}{e+2}$≤a+c,
化為$1-e≤\frac{4}{e+2}$≤1+e,0<e<1.
解得$\frac{\sqrt{17}-3}{2}$≤e<1,
故答案為:$[\frac{{-3+\sqrt{17}}}{2},1)$.
點評 本題考查了橢圓的標準方程及其性質、不等式的性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7}{17}$ | B. | $\frac{17}{7}$ | C. | $-\frac{5}{12}$ | D. | $\frac{10}{17}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=3x2-11x+9 | B. | y=3x2+11x+9 | C. | y=3x2-11x-9 | D. | y=-3x2-11x+9 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y2=4x | B. | ${y^2}=4\sqrt{5}x$ | C. | ${y^2}=8\sqrt{5}x$ | D. | ${y^2}=\sqrt{5}x$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com