如圖,已知兩點(diǎn)A(-,0)、B(,0),△ABC的內(nèi)切圓的圓心在直線x=2上移動.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)過點(diǎn)M(2,0)作兩條射線,分別交(Ⅰ)中所求軌跡于P、Q兩點(diǎn),且=0,求證:直線PQ必過定點(diǎn).

【答案】分析:(Ⅰ)由題意,根據(jù)平面幾何知識可知C的軌跡是以A、B為焦點(diǎn),實(shí)軸長為4的雙曲線的右支(不含右頂點(diǎn)),
由|CA|-|CB|=|AD|-|BD|求出實(shí)半軸,結(jié)合b2=c2-a2求出b2,則C點(diǎn)的軌跡可求;
(Ⅱ)設(shè)出直線PQ與x軸的交點(diǎn),由此寫出直線PQ所在直線方程,和雙曲線方程聯(lián)立后化為關(guān)于y的一元二次方程,利用根與系數(shù)關(guān)系得到P,Q兩點(diǎn)的縱坐標(biāo)的和與積,結(jié)合=0列式求出PQ與x軸交點(diǎn)的橫坐標(biāo)為定值.
解答:解:(Ⅰ)設(shè)△ABC內(nèi)切圓切AB邊于點(diǎn)D,

∴點(diǎn)C的軌跡是以A、B為焦點(diǎn),實(shí)軸長為4的雙曲線的右支(不含右頂點(diǎn)),
由a=2,c=,得
所以點(diǎn)C的方程為;
(Ⅱ)設(shè)PQ:x=my+a(a>2),代入,
得(m2-4)y2+2amy+a2-4=0
設(shè)P(x1,y1),Q(x2,y2),


=

化簡,得3a2-16a+20=0,解得a=2(舍去)或
故直線PQ必過定點(diǎn)
點(diǎn)評:本題主要考查了直線與圓錐曲線的位置關(guān)系的應(yīng)用,直線與曲線聯(lián)立,利用方程的根與系數(shù)的關(guān)系是處理這類問題的最為常用的方法,但圓錐曲線的特點(diǎn)是計(jì)算量比較大,要求考生具備較強(qiáng)的運(yùn)算推理的能力,是難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:已知橢圓A,B,C是長軸長為4的橢圓上三點(diǎn),點(diǎn)A是長軸的一個端點(diǎn),BC過橢圓的中心O,且
AC
BC
=0,|
BC
|=2|
AC
|

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)如果橢圓上兩點(diǎn)P,Q使得直線CP,CQ與x軸圍成底邊在x軸上的等腰三角形,是否總存在實(shí)數(shù)λ使
PQ
AB
?請給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩點(diǎn)A(-
5
,0)、B(
5
,0),△ABC的內(nèi)切圓的圓心在直線x=2上移動.
(Ⅰ)求點(diǎn)C的軌跡方程;
(Ⅱ)過點(diǎn)M(2,0)作兩條射線,分別交(Ⅰ)中所求軌跡于P、Q兩點(diǎn),且
MP
MQ
=0,求證:直線PQ必過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(2,0),B(1,0),點(diǎn)D,E同時(shí)從點(diǎn)B出發(fā)沿單位圓O逆時(shí)針運(yùn)動,且點(diǎn)E的角速度是點(diǎn)D的角速度的2倍.設(shè)∠BOD=θ,0≤θ<2π
(Ⅰ)當(dāng)∠BOD=
π6
,求四邊形ODAE的面積;
(Ⅱ)將D、E兩點(diǎn)間的距離用f(θ)表示,并求f(θ)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知兩點(diǎn)A(-4,0)、B(0,3),求向量、的模,并指出||與||是否相等.

查看答案和解析>>

同步練習(xí)冊答案