(22) (本小題滿分12分)(注意:在試題卷上作答無效)如圖,已知拋物線與圓相交于A、B、C、D四個點。
(Ⅰ)求r的取值范圍
(Ⅱ)當四邊形ABCD的面積最大時,求對角線AC、BD的交點P的坐標。

(Ⅰ)(Ⅱ)(

(Ⅰ)聯(lián)立方程組,可得
,所以方程由兩個不等式正根
由此得到解得,所以r的范圍為
(Ⅱ)不妨設E與M的四個交點坐標分別為設
直線AC,BD的方程分別為
,
解得點p的坐標為設t=,由t=及(1)可知
由于四邊形ABCD為等腰梯形,因而其面積

代入上式,并令,得

求導數(shù),
,解得
時,,當,;當時,
當且僅當時,由最大值,即四邊形ABCD的面積最大,故所求的點P的坐標為(
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知向量),,動點的軌跡為T.
(1)求軌跡T的方程,并說明該方程表示的曲線的形狀;
(2)當時,已知、,試探究是否存在這樣的點是軌跡T內部的整點(平面內橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的中心在原點,其左焦點與拋物線的焦點重合,過的直線與橢圓交于AB兩點,與拋物線交于C、D兩點.當直線x軸垂直時,
(Ⅰ)求橢圓的方程;
(II)求過點O、,并且與橢圓的左準線相切的圓的方程;
(Ⅲ)求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩個焦點,直線是它的一條準線,、分別是橢圓的上、下兩個頂點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設以原點為頂點,為焦點的拋物線為,若過點的直線與相交于不同、的兩點、,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線M的中心在原點,并以橢圓的焦點為焦點,以拋物線的準線為右準線.
(Ⅰ)求雙曲線M的方程;
(Ⅱ)設直線 與雙曲線M相交于A、B兩點,O是原點.
① 當為何值時,使得?
② 是否存在這樣的實數(shù),使A、B兩點關于直線對稱?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓與雙曲線共焦點,且過(
(1)求橢圓的標準方程.
(2)求斜率為2的一組平行弦的中點軌跡方程;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓的兩個焦點為、,點在橢圓上,且,,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓、兩點,且、關于點對稱,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率,過Aa,0),
B(0,-b),兩點的直線到原點的距離是
⑴求橢圓的方程 ; 
⑵已知直線ykx+1(k0)交橢圓于不同的兩點E、F,且E、F都在以B為圓心的圓上,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=-x2上的點到直線4x+3y-8=0距離的最小值是(  )
A.B.C.D.3

查看答案和解析>>

同步練習冊答案