設(shè)函數(shù)f(x)=|x2-4x-5|.
(1)在區(qū)間[-2,6]上畫(huà)出函數(shù)f(x)的圖像(如圖);
(2)設(shè)集合A={x|f(x)≥5},B=(-∞,-2]∪[0,4]∪[6,+∞).試判斷集合A和B之間的關(guān)系,并給出證明;
(3)當(dāng)k>2時(shí),求證:在區(qū)間[-1,5]上,y=kx+3k的圖像位于函數(shù)f(x)圖像的上方.
解:(1)f(x)=|x2-4x-5|=其圖像如圖所示. (2)方程f(x)=5的解分別是x=2,0,4,2+,觀察上圖, 可得f(x)≥5的解是x≤2,或0≤x≤4,或x≥2+. 則A={x|x≤2,或0≤x≤4,或x≥2+}. ∵2+<6,2>-2, ∴BA. (3)當(dāng)x∈[-1,5]時(shí),f(x)=-x2+4x+5.設(shè)g(x)=kx+3k-f(x), 則g(x)=kx+3k-(-x2+4x+5)=x2+(k-4)x+(3k-5)=(x)2.∵k>2,∴<1.又-1≤x≤5, 、佼(dāng)-1≤<1,即2<k≤6時(shí),取x=, g(x)min=[(k-10)2-64]. ∵16≤(k-10)2<64,∴(k-10)2-64<0.則g(x)min>0. 、诋(dāng)<-1,即k>6時(shí),取x=-1,g(x)min=2k>0. 由①②,可知當(dāng)k>2時(shí),在x∈[-1,5]上,g(x)>0. 因此,在區(qū)間[-1,5]上,y=k(x+3)的圖像位于函數(shù)f(x)圖像的上方. |
(1)可以利用對(duì)稱變換作圖法或?qū)⒑瘮?shù)的解析式化為分段函數(shù);(2)利用圖像解不等式f(x)≥5;應(yīng)用定義證明集合A和B之間的關(guān)系;(3)轉(zhuǎn)化為證明:當(dāng)k>2時(shí),在x∈[-1,5]上,kx+3k-f(x)>0恒成立即可. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2002年全國(guó)各省市高考模擬試題匯編 題型:044
設(shè)函數(shù)f(x)=(x-1)(a>0,且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時(shí),點(diǎn)Q(3x,)是函數(shù)y=g(x)圖象上的點(diǎn).
(Ⅰ)寫(xiě)出函數(shù)y=g(x)的解析式;
(Ⅱ)求不等式g(x)≤f(x)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣州市2008屆高中教材變式題2:二次函數(shù) 題型:022
設(shè)函數(shù)f(x)=x|x|+bx+c,給出下列4個(gè)命題:
①當(dāng)c=0時(shí),y=f(x)是奇函數(shù);
②當(dāng)b=0,c>0時(shí),方程f(x)=0只有一個(gè)實(shí)根;
③y=f(x)的圖象關(guān)于點(diǎn)(0,c)對(duì)稱;
④方程f(x)=0至多有兩個(gè)實(shí)根.
上述命題中正確的序號(hào)為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:天津市耀華中學(xué)2012屆高三寒假驗(yàn)收考試數(shù)學(xué)理科試題 題型:013
設(shè)函數(shù)f(x)=x|x|+bx+c,則下列命題中正確命題的序號(hào)有
①當(dāng)b>0時(shí),函數(shù)f(x)在R上是單調(diào)增函數(shù);
②當(dāng)b<0時(shí),函數(shù)f(x)在R上有最小值;
③函數(shù)f(x)的圖象關(guān)于(0,c)對(duì)稱;
④方程f(x)=0可能有三個(gè)實(shí)數(shù)根.
A.①③
B.①④
C.①②④
D.①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省云浮羅定中學(xué)2012屆高三11月月考數(shù)學(xué)理科試題 題型:044
已知二次函數(shù)y=g(x)的圖象經(jīng)過(guò)點(diǎn)O(0,0)、A(m,0)與點(diǎn)P(m+1,m+1),設(shè)函數(shù)f(x)=(x-n)g(x)在x=a和x=b處取到極值,其中m>n>0,b<a.
(1)求g(x)的二次項(xiàng)系數(shù)k的值;
(2)比較a,b,m,n的大小(要求按從小到大排列);
(3)若m+n≤2,且過(guò)原點(diǎn)存在兩條互相垂直的直線與曲線y=f(x)均相切,求y=f(x).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年寧夏高三第五次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)=,D是由x軸和曲線y=f(x)及該曲線在點(diǎn)(1,0)處的切線所圍成的封閉區(qū)域,則z=x-2y在D上的最大值為_(kāi)_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com