=1,=3確定的等差數(shù)列中,當(dāng)=298時,序號n等于(   )

A. 99           B. 100          C. 96           D. 101

 

【答案】

B

【解析】解:由解得。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
,
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某興趣小組研究某城市霧霾等極端天氣發(fā)生次數(shù)與患呼吸道疾病人數(shù)多少之間的關(guān)系,他們分別到氣象局和某醫(yī)院抄錄了1至6月份的霧霾等極端天氣發(fā)生次數(shù)情況與患呼吸道疾病而就診的人數(shù),得到如下數(shù)據(jù):
月份 1月 2月 3月 4月 5月 6月
霧霾等極端天氣發(fā)生次數(shù)x(次) 10 11 13 12 8 6
患呼吸道疾病就診人數(shù)y(人) 22 25 29 26 16 12
該興趣小組確定的研究方案是:先從6組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗線性回歸方程是否理想.
(Ⅰ)若選出的是1月份和6月份兩組數(shù)據(jù)進行檢驗,請根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
?
y
=
?
b
x+
?
a
;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到是線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?并寫出具體判斷過程.
參考公式:
?
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,
?
a
=
.
y
-
?
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:閘北區(qū)一模 題型:解答題

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=(
.
a-c
bd
.
.
da
cb
.
)

(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年高三強化班數(shù)學(xué)寒假作業(yè)(集合與簡易邏輯)(解析版) 題型:解答題

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=
(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市閘北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

在中學(xué)階段,對許多特定集合(如實數(shù)集、復(fù)數(shù)集以及平面向量集等)的學(xué)習(xí)常常是以定義運算(如四則運算)和研究運算律為主要內(nèi)容.現(xiàn)設(shè)集合A由全體二元有序?qū)崝?shù)組組成,在A上定義一個運算,記為⊙,對于A中的任意兩個元素α=(a,b),β=(c,d),規(guī)定:α⊙β=
(1)計算:(2,3)⊙(-1,4);
(2)請用數(shù)學(xué)符號語言表述運算⊙滿足交換律和結(jié)合律,并任選其一證明;
(3)A中是否存在唯一確定的元素I滿足:對于任意α∈A,都有α⊙I=I⊙α=α成立,若存在,請求出元素I;若不存在,請說明理由;
(4)試延續(xù)對集合A的研究,請在A上拓展性地提出一個真命題,并說明命題為真的理由.

查看答案和解析>>

同步練習(xí)冊答案