當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立,則a的范圍是

[  ]

A.(0,1)

B.(1,2)

C.(1,2]

D.(0,)

答案:C
解析:

  設(shè)f1(x)=(x-1)2,f2(x)=logax,要使當(dāng)x∈(1,2)時(shí),不等式(x-1)2<logax恒成立.只需f1(x)=(x-1)2在(1,2)上的圖象在f2(x)=logax的下方即可.

  當(dāng)0<a<1時(shí),由圖象知顯然不成立.當(dāng)a>1時(shí),如圖所示,要使在(1,2)上,f1(x)=(x-1)2的圖象在f2(x)=logax的下方,只需f1(2)≤f2(2),即(2-1)2≤loga2,loga2≥1,∴1<a≤2.故選C.


提示:

在平時(shí)做題時(shí)一定要注意圖象的運(yùn)用,本題還要注意a能取到2.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d是定義在R上的偶函數(shù),且當(dāng)x∈[1,2]時(shí),該函數(shù)的值域?yàn)閇-2,1].求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=xf(x)為偶函數(shù),當(dāng)x∈[1,2]時(shí),f(x)=-(x+2)2,且f(x+2)=-f(x).
(1)求x∈[-1,0]的解析式;
(2)求f(2008.5)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•浦東新區(qū)二模)已知函數(shù)f (x )=
x+a
x+2
(a為常數(shù)).
(1)解不等式f(x-2)>0;
(2)當(dāng)x∈[-1,2]時(shí),f (x)的值域?yàn)閇
5
4
,2],求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(2-x)+f(x)=0和f(x-2)+f(x)=0,且當(dāng)x∈[1,2]時(shí)f(x)=1-(x-2)2.若直線y=kx(k為常數(shù)),與函數(shù)f(x)的圖象在區(qū)間(-2,5)上恰有4個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A、(2
15
-8,0)
B、(2
3
-4,0)
C、(-
1
2
,0
D、(-
1
4
,0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上奇函數(shù)f(x)=ax3+bx2+cx+d(a≠0),f(1)≠1;且當(dāng)x∈[1,2]時(shí),函數(shù)g(x)=
f(x)x
的值域?yàn)閇-2,1].
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)在x∈[1,+∞)上的單調(diào)性(不需寫出推理過(guò)程),并寫出f(x)在其定義域上的單調(diào)區(qū)間;
(3)討論關(guān)于x的方程f(x)-t=0(t∈R)的根的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案