(1)已知圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,()則直線與圓的交點(diǎn)的極坐標(biāo)為______________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若點(diǎn)P坐標(biāo)為(cos2013°, sin2013°),則點(diǎn)P在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若a2=3,a6=11,則S7=
A.91 B. C.98 D.49
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線l: x-y+=0與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切。
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過點(diǎn)M分別作直線MA, MB交橢圓于A, B兩點(diǎn),設(shè)兩直線的斜率分別為k1, k2, 且k1+k2=2,證明:直線AB過定點(diǎn)(―1, ―1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線C:的離心率為,左頂點(diǎn)為(-1,0)。
(1)求雙曲線方程;
(2)已知直線x-y+m=0與雙曲線C交于不同的兩點(diǎn)A、B,且線段AB的中點(diǎn)在圓上,求m的值和線段AB的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知a為實(shí)數(shù),。
(1)若,求在[-2,2] 上的最大值和最小值;
(2)若在(-∞,-2)和(2,+∞)上都是遞增的,求a的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com