20.函數(shù)y=x4-4x+3在區(qū)間[-2,3]上的最小值為( 。
A.72B.36C.2D.0

分析 先對函數(shù)進(jìn)行求導(dǎo),然后判斷函數(shù)在[-2,3]上的單調(diào)性,求出函數(shù)的最小值.

解答 解:∵y=x4-4x+3,
∴y'=4x3-4,
當(dāng)y'=4x3-4≥0時(shí),x≥1,函數(shù)y=x4-4x+3單調(diào)遞增,
∴在[1,3]上,當(dāng)x=1時(shí)函數(shù)取到最小值0.
當(dāng)y'=4x3-4<0時(shí),x<1,函數(shù)y=x4-4x+3單調(diào)遞減,
∴在[-2,1]上,當(dāng)當(dāng)x=1時(shí)函數(shù)取到最小值0.
故選:D.

點(diǎn)評 本題主要考查利用導(dǎo)數(shù)求函數(shù)的最值的問題.屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.不等式組$\left\{\begin{array}{l}{x^2}-x-2>0①\\ 2{x^2}+(5+2a)x+5a<0②\end{array}\right.$解集中的整數(shù)有且只有一個(gè),則a的范圍( 。
A.[-2,2]B.[-3,2)C.[-3,2)∪(3,4]D.(3,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在等比數(shù)列{an}中,若an>0,a8=$\sqrt{2}$,則a5+a11有最小值是2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=$\left\{\begin{array}{l}{x+{3}^{x}(x≤0)}\\{\frac{1}{3}{x}^{3}-4x+a(x>0)}\end{array}\right.$在定義域上恰有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.0<a<$\frac{16}{3}$B.a<$\frac{16}{3}$C.a<0或a>$\frac{16}{3}$D.a≤$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)平面α∥平面β,直線a?α,點(diǎn)B∈β,則在β內(nèi)過點(diǎn)B的所有直線中( 。
A.不存在與a平行的直線B.存在唯一一條與a平行的直線
C.存在無數(shù)條與a平行的直線D.只有兩條與a平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)動點(diǎn)P(x,y)滿足$\left\{\begin{array}{l}{2x+y≤40}\\{x+2y≤50}\\{x≥0}\\{y≥0}\end{array}\right.$,則z=x+y的最大值是( 。
A.10B.30C.20D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.過橢圓$\frac{x^2}{4}$+${\frac{y}{3}^2}$=1的右焦點(diǎn)作斜率為2的直線交橢圓于A,B兩點(diǎn),求線段|AB|的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=Asin(2ωx+φ)(ω>0),若f(x+$\frac{π}{6}$)是周期為π的偶函數(shù),則φ的一個(gè)可能值是( 。
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.πD.$\frac{7π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列函數(shù)中,最小值為2的是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=4x+2x,x∈[0,+∞)D.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$

查看答案和解析>>

同步練習(xí)冊答案