15.已知$\overrightarrow{a}$=(6,0),$\overrightarrow$=(-3,3),則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.45°B.60°C.135°D.120°

分析 直接利用斜率的數(shù)量積求解斜率的夾角即可.

解答 解:$\overrightarrow{a}$=(6,0),$\overrightarrow$=(-3,3),則$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
則cosθ=$\frac{\overrightarrow{a}•\overrightarrow}{\left|\overrightarrow{a}\right|\left|\overrightarrow\right|}$=$\frac{-18}{6×3\sqrt{2}}$=$-\frac{\sqrt{2}}{2}$.
θ=135°.
故選:C.

點(diǎn)評(píng) 本題考查斜率的數(shù)量積的應(yīng)用,斜率的夾角的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓C:(x-3)2+(y-4)2=1和兩點(diǎn)A(-m,0),B(m,0)(m>0),若圓C上不存在點(diǎn)P,使得∠APB為直角,則實(shí)數(shù)m的取值范圍是(0,4)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系xOy中,設(shè)定點(diǎn)A(a,-a),P是函數(shù)y=$\frac{1}{x}$(x≥1)圖象上一動(dòng)點(diǎn),若點(diǎn)P,A之間的最短距離為$\sqrt{10}$,則滿足條件的實(shí)數(shù)a的所有值為-2或2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.求下列函數(shù)的定義域、值域、單調(diào)區(qū)間3
(1)f(x)=$\frac{1}{{2}^{x-4}}$;
(2)f(x)=($\frac{1}{2}$)${\;}^{\sqrt{-{x}^{2}-3x+4}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sin(3π+α)=$\frac{1}{3}$,求:$\frac{sin(180°+α)cos(720°+α)tan(540°+α)•sin(-180°+α)}{tan(900°+α)•sin(-180°-α)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知角α的終邊落在直線y=$\sqrt{2}$x上.求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l經(jīng)過點(diǎn)A(0,4),且與直線2x-y-3=0垂直,那么直線l的方程是( 。
A.x+2y-8=0B.x+2y+8=0C.2x-y-4=0D.2x-y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.結(jié)晶體的基本單位稱為晶胞,如圖是食鹽晶胞的示意圖(可看成是八個(gè)棱長(zhǎng)為$\frac{1}{2}$的小正方體堆積成的正方體).其中實(shí)圓•代表鈉原子,空間圓?代表氯原子.建立空間直角坐標(biāo)系Oxyz后,圖中最上層中間的鈉原子所在位置的坐標(biāo)是( 。
A.($\frac{1}{2}$,$\frac{1}{2}$,1)B.(0,0,1)C.(1,$\frac{1}{2}$,1)D.(1,$\frac{1}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)x>0,y>0,z>0,且x2-4xy+9y2-z=0,則當(dāng)$\frac{z}{xy}$取得最小值時(shí),$\frac{6}{x}+\frac{4}{y}-\frac{6}{z}$的最大值為9.

查看答案和解析>>

同步練習(xí)冊(cè)答案