14.已知雙曲線x2-y2=1,則它的右焦點到它的漸近線的距離是$\frac{\sqrt{2}}{2}$.

分析 將雙曲線的方程化為標準方程,可得a,b,c的值,漸近線方程,運用點到直線的距離公式,計算即可得到所求值.

解答 解:雙曲線x2-y2=1,可得a=1,b=1,c=$\sqrt{2}$,
則右焦點(1,0)到它的漸近線y=x的距離為d=$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查雙曲線的焦點到漸近線的距離,注意運用點到直線的距離公式,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在四棱錐P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動點.若CE∥平面PAB,則三棱錐C-ABE的體積為( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5. 如圖,三棱錐A-BCD中,DC⊥BD,BC=2$\sqrt{3}$,CD=AC=2,AB=AD=2$\sqrt{2}$.
(Ⅰ)證明:AB⊥CD;
(Ⅱ)求直線AC與平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.快遞員通知小張中午12點到小區(qū)門口取快遞,由于工作原因,快遞員于11:50到12:10之間隨機到達小區(qū)門口,并停留等待10分鐘,若小張于12:00到12:10之間隨機到達小區(qū)門口,也停留等待10分鐘,則小張能取到快遞的概率為( 。
A.$\frac{1}{2}$B.$\frac{7}{12}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.將圓x2+y2=1上每一點的橫坐標變?yōu)樵瓉淼?倍,縱坐標不變,得到曲線C.
(1)求曲線C的參數(shù)方程;
(2)求曲線C上的點P(x,y),使得$z=x-2\sqrt{3}y$取得最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在f1(x)=x${\;}^{\frac{1}{2}}$,f2(x)=x2,f3(x)=2x,f4(x)=log${\;}_{\frac{1}{2}}$x四個函數(shù)中,當x1>x2>1時,使$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立的函數(shù)是f1(x)=x${\;}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α為銳角,滿足$sin(\frac{π}{2}+2α)=cos(\frac{π}{4}-α)$,則sin2α=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若p是真命題,q是假命題,則(  )
A.p∧q是真命題B.p∨q是假命題C.¬p是真命題D.¬q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義在R上的奇函數(shù),當x≥0時f(x)=3x+m(m為常數(shù)),則f(-3)=-26.

查看答案和解析>>

同步練習(xí)冊答案