(本題滿分10分)
如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E為PA的中點(diǎn),過(guò)E作平行于底面的平面EFGH,分別與另外三條側(cè)棱相交于點(diǎn)F、G、H. 已知底面ABCD為直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求異面直線AF與BG所成的角的大小;
(2)求平面APB與平面CPD所成的銳二面角的余弦值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何體的三視圖如圖,與交于點(diǎn),分別是直線的中點(diǎn),
(I)面;
(II)面;
(Ⅲ)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)正方體,,E為棱的中點(diǎn).
(Ⅰ) 求證:; (Ⅱ) 求證:平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(1)求證:平面;
(2)求三棱錐的體積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分別為MB、PB、PC的中點(diǎn),且AD=PD=2MA.
(1)求證:平面EFG⊥平面PDC;
(2)求三棱錐P-MAB與四棱錐P-ABCD的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
、如圖,一個(gè)圓錐形的空杯子上面放著一個(gè)半球形的冰淇淋,如果冰淇淋融化了,會(huì)溢出杯子嗎?請(qǐng)用你的計(jì)算數(shù)據(jù)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
( 14分)如圖,已知矩形ABCD中,AB=10,BC=6,將矩形沿對(duì)角線BD把△ABD折起,使A移到點(diǎn),且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求證:;
(Ⅱ)求證:平面平面;
(Ⅲ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,在平面內(nèi),ABCD是且的菱形,和都是正方形。將兩個(gè)正方形分別沿AD,CD折起,使與重合于點(diǎn)D1。設(shè)直線l過(guò)點(diǎn)B且垂直于菱形ABCD所在的平面,點(diǎn)E是直線l上的一個(gè)動(dòng)點(diǎn),且與點(diǎn)D1位于平面ABCD同側(cè),設(shè)(圖2)。
(1)設(shè)二面角E – AC – D1的大小為q,若,求的取值范圍;
(2)在線段上是否存在點(diǎn),使平面平面,若存在,求出分所成的比;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
如圖,在六面體中,平面∥平面,
⊥平面,,,
∥.且,.
(1)求證: ∥平面;
(2)求二面角的余弦值;
(3) 求五面體的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com