如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點

(Ⅰ)求證:平面PAC⊥平面PBC;

(Ⅱ)若AB=2,AC=1,PA=1,求證:二面角C-PB-A的余弦值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(Ⅰ)求證:平面PAC⊥平面PBC;
(Ⅱ)若AB=2,AC=1,PA=1,求證:二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年吉林長春十一中高二上學(xué)期期初考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.

(1)求證:平面PAC⊥平面PBC;(6分)

(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓周上的一點.

(1)求證:平面PAC⊥平面PBC;(6分)

(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年遼寧省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(I)求證:平面PAC⊥平面PBC;
(II)若AB=2,AC=1,PA=1,求證:二面角C-PB-A的余弦值.

查看答案和解析>>

同步練習(xí)冊答案