函數(shù)f(x)=
x
+1
x-1
的定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:列出使解析式有意義x的不等式組,然后解之.
解答: 解:使函數(shù)有意義的x范圍是
x≥0
x-1≠0
,解得{x|x≥0,且x≠1|};
故答案為:{x|x≥0,且x≠1|}.
點評:本題考查了函數(shù)的定義域,關(guān)鍵是列出使函數(shù)解析式有意義的關(guān)于自變量的不等式組,解之.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時,f(x)為減函數(shù),且f(2)=0,則不等式(x-1)f(x)>0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
-alnx(a∈R)
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)設(shè)g(x)=f(x)+2x,若g(x)在[1,e]上不單調(diào)且僅在x=e處取得最大值,求a的取值范圍;
(3)當(dāng)a=1時,探究當(dāng)x∈(1,+∞)時,函數(shù)y=f(x)的圖象與函數(shù)h(x)=
1
2
x2
-x+1圖象之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一個動點,直線AB,AC分別過焦點F1,F(xiàn)2,且與橢圓交于B,C兩點,若當(dāng)AC⊥x軸時,恰好有|AF1|:|AF2|=3:1,則該橢圓的離心率為( 。
A、
1
2
B、
2
2
C、
3
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)證明:當(dāng)x>1,2lnx<x-
1
x

(Ⅱ)若不等式(1+
a
t
)ln(1+t)>a對任意的正實數(shù)t恒成立,求正實數(shù)a的取值范圍
(Ⅲ)求證:(
9
10
19
1
e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,1),B(4,1),C(3,3),求△ABC的垂心H的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正實數(shù)a,b,c滿足a+b+c=1,
1
a
+
1
b
+
1
c
=10,則abc的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐的高比底面邊長小4,且其外接球的表面積為196π,則該正三棱錐的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式|x+1|+|x-2|>a的解集為R,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案