函數(shù)
上既有極大值又有極小值,則
的取值范圍為
解:因為
上既有極大值又有極小值,說明了導函數(shù)為零有兩個不同的實數(shù)解,這樣利用
,解的范圍為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(其中常數(shù)a,b∈R)。
是奇函數(shù).
(Ⅰ)求
的表達式;
(Ⅱ)求
在區(qū)間[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分14分)規(guī)定
其中
x∈R,
m為正整數(shù),且
=1,這是排列數(shù)A
(
n,
m是正整數(shù),且
m≤
n)的一種推廣.
(1)求A
的值; (2)確定函數(shù)
的單調區(qū)間.
(3) 若關于
的方程
只有一個實數(shù)根, 求
的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設函數(shù)
在區(qū)間(0,4)上是減函數(shù),則
的取值范圍是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若函數(shù)
的導數(shù)是
,則函數(shù)
的單調減區(qū)間是
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設函數(shù)
f(
x)在定義域內(nèi)可導,
y=
f (
x)的圖象如圖1所示,則導函數(shù)
的圖象可能為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
(I)若
是
的極值點,求
的極值;
(Ⅱ)若函數(shù)
是
上的單調遞增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
,若函數(shù)
在區(qū)間
上是單調減函數(shù),則
的最小值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的單調遞減區(qū)間是
。
查看答案和解析>>