分析 令f(x)$>-\frac{1}{2}$,解得:x$>\frac{1}{2}$,若對任意θ∈[0,$\frac{π}{2}$],不等式f(cos2θ+λsinθ-$\frac{1}{3}$)+$\frac{1}{2}$>0恒成立,則對任意θ∈[0,$\frac{π}{2}$],cos2θ+λsinθ-$\frac{1}{3}$$>\frac{1}{2}$恒成立,進(jìn)而得到答案.
解答 解:∵f(x)=$\left\{\begin{array}{l}{{2}^{x-1}(x≥1)}\\{3x-2(x<1)}\end{array}\right.$,
令f(x)$>-\frac{1}{2}$,
解得:x$>\frac{1}{2}$,
若對任意θ∈[0,$\frac{π}{2}$],不等式f(cos2θ+λsinθ-$\frac{1}{3}$)+$\frac{1}{2}$>0恒成立,
則對任意θ∈[0,$\frac{π}{2}$],cos2θ+λsinθ-$\frac{1}{3}$$>\frac{1}{2}$恒成立,
即1-sin2θ+λsinθ-$\frac{1}{3}$$>\frac{1}{2}$恒成立,
當(dāng)θ=0時,不等式恒成立,
當(dāng)θ≠0時,1-sin2θ+λsinθ-$\frac{1}{3}$$>\frac{1}{2}$可化為:λ>$\frac{-\frac{1}{6}+{sin}^{2}θ}{sinθ}$=sinθ-$\frac{1}{6sinθ}$,
當(dāng)θ=$\frac{π}{2}$時,sinθ-$\frac{1}{6sinθ}$取最大值$\frac{5}{6}$,
故λ>$\frac{5}{6}$,
故整數(shù)λ的最小值為1,
故答案為:1.
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)恒成立問題,函數(shù)的最值,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2) | B. | (2,+∞) | C. | (1,+∞) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | -5 | D. | -4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (ln2,1) | B. | ($\frac{1}{2}$,ln2) | C. | ($\frac{1}{3}$,$\frac{1}{e}$) | D. | ($\frac{1}{e}$,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{2π}{9}$個單位 | B. | 向左平移$\frac{2π}{9}$個單位 | ||
C. | 向右平移$\frac{2π}{3}$個單位 | D. | 向左平移$\frac{2π}{3}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=2x | B. | f(x)=log${\;}_{\frac{1}{2}}$x | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=-x|x| |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com