設(shè)a、b∈R,關(guān)于x的方程x2+ax+b=0的實(shí)根為α、β.若|a|+|b|<1,求證:|α|<1,|β|<1.
分析:由于方程x2+ax+b=0的實(shí)根為α、β,由韋達(dá)定理(根與系數(shù)的關(guān)系)我們可以給出a,b,α,β之間的關(guān)系,再結(jié)合|a|+|b|<1,我們可以得到一個(gè)關(guān)于|α|,|β|的不等式,根據(jù)不等式的性質(zhì)易得:|α|<1,|β|<1;當(dāng)然分析待證結(jié)果::|α|<1,|β|<1,我們可知,要證:|α|<1,|β|<1即證方程x2+ax+b=0的實(shí)根為α、β,均介于-1到1之間.
解答:證明:法一:∵α+β=-a,αβ=b,
∴|α+β|+|αβ|=|a|+|b|<1.
∴|α|-|β|+|α||β|<1,(|α|-1)(|β|+1)<0.
∴|α|<1.同理,|β|<1.
法二:設(shè)f(x)=x2+ax+b,則有
f(1)=1+a+b>1-(|a|+|b|)>1-1=0,
f(-1)=1-a+b>1-(|a|+|b|)>0.
∵0≤|a|<1,∴-1<a<1.
∴-
1
2
<-
a
2
1
2

∴方程f(x)=0的兩實(shí)根在(-1,1)內(nèi),即|α|<1,|β|<1.
點(diǎn)評(píng):證法一先利用韋達(dá)定理,再用絕對(duì)值不等式的性質(zhì)恰好能分解因式,但在使用絕對(duì)值不等式的性質(zhì)比較難轉(zhuǎn)化,是此法證明問題的一個(gè)瓶頸;證法二考慮根的分布,證兩根在(-1,1)內(nèi),我們可以利用函數(shù)零點(diǎn)存在定理進(jìn)行判斷,故建議大家熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有下面四個(gè)判斷:
①命題“設(shè)a、b∈R,若a+b≠6,則a≠3或b≠3”是一個(gè)假命題;
②若“p或q”為真命題,則p、q均為真命題;
③命題“?a、b∈R,a2+b2≥2(a-b-1)”的否定是“?a、b∈R,a2+b2≤2(a-b-1)”;
④若函數(shù)f(x)=ln(a+
2x+1
)
的圖象關(guān)于原點(diǎn)對(duì)稱,則a=-1.
其中正確的有
(只填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鷹潭一模)下面四個(gè)命題,真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a、b∈R,關(guān)于x的方程x2+ax+b=0的實(shí)根為α、β.若|a|+|b|<1,求證:|α|<1,|β|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):6.2 不等式的證明1(解析版) 題型:解答題

設(shè)a、b∈R,關(guān)于x的方程x2+ax+b=0的實(shí)根為α、β.若|a|+|b|<1,求證:|α|<1,|β|<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案