(本小題滿分14分)已知數(shù)列
滿足
某同學(xué)欲求
的通項(xiàng)公式,他想,如能找到一個(gè)函數(shù)
,把遞推關(guān)系變成
后,就容易求出
的通項(xiàng)了.
(Ⅰ)請(qǐng)問:他設(shè)想的
存在嗎?
的通項(xiàng)公式是什么?
(Ⅱ)記
,若不等式
對(duì)任意
都成立,求實(shí)數(shù)
的取值范圍.
(Ⅰ)
,
所以只需
………………2分
,
………………3分
.故他設(shè)想的
存在,且
………………4分
………………5分
………………6分
(Ⅱ)
………………7分
由
,得
.………………8分
設(shè)
,
則
………………9分
當(dāng)
時(shí),
,(用數(shù)學(xué)歸納法證也行)………………11分
時(shí),
. 容易驗(yàn)證 ,
時(shí),
,
………………13分
的取值范圍為
. ………………14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分8分)
數(shù)列
滿足
。
(Ⅰ)計(jì)算
,并由此猜想通項(xiàng)公式
;
(Ⅱ)用數(shù)學(xué)歸納法證明(Ⅰ)中的猜想。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
滿足
,
(
且
)
(Ⅰ)證明數(shù)列
是常數(shù)列;
(Ⅱ)求數(shù)列
的通項(xiàng)公式;
(Ⅲ)當(dāng)
時(shí),求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題12分)已知等比數(shù)列
中,
。
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)等差數(shù)列
中,
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列
(1)求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,求數(shù)列
(3)設(shè)
,
,記
,設(shè)數(shù)列
的前
項(xiàng)和為
,求證:對(duì)任意正整數(shù)
都有
;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)等差數(shù)列
的前
項(xiàng)和為
,等比數(shù)列
的前
項(xiàng)和為
已知數(shù)列
的公比
為
(Ⅰ
)求數(shù)列
,
的通項(xiàng)公式;
(Ⅱ)求
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)等比數(shù)列
的公比為q,前n項(xiàng)和為S
n,若S
n+1,S
n,S
n+2成等差數(shù)列,則q
的值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
記等差數(shù)列
的前
項(xiàng)和
,利用倒序求和的方法得:
;類似的,記等比數(shù)列
的前
項(xiàng)的積為
,且
,試類比等差數(shù)列求和的方法,可將
表示成首項(xiàng)
,末項(xiàng)
與項(xiàng)數(shù)
的一個(gè)關(guān)系式,即公式
_______________。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知數(shù)列
滿足
,且對(duì)任意的正整數(shù)
都有
,若數(shù)列
的前
項(xiàng)和為
,則
=
查看答案和解析>>