①②③④
分析:①根據(jù)等差數(shù)列的性質,推出2(S
2n-S
n)=S
n+(S
3n-S
2n),即可得到S
n,S
2n-S
n,S
3n-S
2n,…為等差數(shù)列;
②根據(jù)等比數(shù)列的性質,得到(S
2n-S
n)
2與S
n•(S
3n-S
2n)相等,得到S
n,S
2n-S
n,S
3n-S
2n,…是等比數(shù)列;
③根據(jù)等比數(shù)列的前n項和的公式及等比數(shù)列的性質,得到
=T
n•
,所以此數(shù)列為等比數(shù)列;
④根據(jù)等差數(shù)列的前n項和的公式及等差數(shù)列的性質,得到2(S
2n-S
n)=S
n•(S
3n-S
2n),即可求出公差d的值;
⑤根據(jù)等比數(shù)列的前n項和的公式及等比數(shù)列的性質,得到(S
4n-S
2n)
2與S
2n•(S
6n-S
4n)相等,即可求出公比q的值.
解答:①設等差數(shù)列a
n的首項為a
1,公差為d,
則S
n=a
1+a
2+…+a
n,S
2n-S
n=a
n+1+a
n+2+…+a
2n=a
1+nd+a
2+nd+…+a
n+nd=S
n+n
2d,
同理:S
3n-S
2n=a
2n+1+a
2n+2+…+a
3n=a
n+1+a
n+2+…+a
2n+n
2d=S
2n-S
n+n
2d,
∴2(S
2n-S
n)=S
n+(S
3n-S
2n),
∴S
n,S
2n-S
n,S
3n-S
2n是等差數(shù)列.此選項正確;
②設等比數(shù)列的首項為a
1,等比為q,
則S
n=
,S
2n-S
n=
-
=
,同理S
3n-S
2n=
,
所以(S
2n-S
n)
2=S
n(S
3n-S
2n),得到此數(shù)列為等比數(shù)列,此選項正確;
③T
n=a
1a
2…a
n,
=a
n+1a
n+2…a
2n=
(a
1a
2…a
n),
=a
2n+1a
2n+2…a
3n=
(a
n+1a
n+2…a
2n),
所以
=T
n•
,所以此數(shù)列為等比數(shù)列,此選項正確;
④因為數(shù)列:S
n,S
2n-S
n,S
3n-S
2n,…為常數(shù)數(shù)列,設S
n=a,則S
2n-S
n=a,解得:S
2n=2a,
而2S
n=2na
1+
d,S
2n=2na
1+
d,所以解得d=0,此選項正確;
⑤若數(shù)列:S
2n,S
4n-S
2n,S
6n-S
4n,…為常數(shù)數(shù)列,設S
2n=b,則S
4n-S
2n=b,解得S
4n=2b,
假如公比q=1,得到數(shù)列不為常數(shù)列,所以公比q不可能為1,此選項錯,
所以結論正確的序號有:①②③④
故答案為:①②③④
點評:此題考查學生靈活運用等差、等比數(shù)列的性質化簡求值,是一道綜合題.