橢圓C以拋物線的焦點(diǎn)為右焦點(diǎn),且經(jīng)過(guò)點(diǎn)A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若分別為橢圓的左右焦點(diǎn),求的角平分線所在直線的方程.
(Ⅰ);(II)y=2x-1。
【解析】
試題分析:(Ⅰ)設(shè)橢圓C的方程為
易知拋物線的焦點(diǎn)為(2,0),所以橢圓的左右焦點(diǎn)分別為(-2,0),(2,0)
根據(jù)橢圓的定義
所以,所以
所以橢圓C的方程為
(II)由(Ⅰ)知(-2,0),(2,0)
所以直線的方程為即,直線的方程為
所以的角平分線所在直線的斜率為正數(shù)。
設(shè)(x,y)為的角平分線上任意一點(diǎn),則有
由斜率為正數(shù),整理得y=2x-1,這就是所求的角平分線所在直線的方程.
考點(diǎn):本題主要考查橢圓的標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系,拋物線的幾何性質(zhì)。
點(diǎn)評(píng):中檔題,求橢圓的標(biāo)準(zhǔn)方程,主要運(yùn)用了橢圓的幾何性質(zhì),注意明確焦點(diǎn)軸和a,b,c的關(guān)系。曲線關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題(2)出發(fā)利用角的平分線的性質(zhì),求得直線方程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年甘肅省高三第三次模擬考試?yán)砜茢?shù)學(xué) 題型:選擇題
已知橢圓C:,以拋物線的焦點(diǎn)為橢圓的一個(gè)焦點(diǎn),且短軸一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)可組成一個(gè)等邊三角形,則橢圓C的離心率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省福州市高三第五次質(zhì)量檢查數(shù)學(xué)文卷 題型:解答題
(本小題滿分12分)
曲線是以原點(diǎn)為中心,以拋物線的焦點(diǎn)F為右焦點(diǎn),離心率為的橢圓,且過(guò)F的直線交橢圓C于P、Q兩點(diǎn),M是中點(diǎn).
(1)求橢圓C的方程;
(2)當(dāng)時(shí),求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年五校聯(lián)合教學(xué)調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com