【題目】已知圓:和點,動圓經過點且與圓相切,圓心的軌跡為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)四邊形的頂點在曲線上,且對角線均過坐標原點,若 .
(i) 求的范圍;(ii) 求四邊形的面積.
【答案】(I) ;(II)(i) , (ii)
【解析】
(I)求出圓M的圓心,半徑,通過動圓P經過點N且與圓M相切,設動圓P半徑為r,則 |PM|.曲線E是M,N為焦點,長軸長為的橢圓.求解即可;
(Ⅱ)把直線AB的方程與橢圓方程聯(lián)立,利用韋達定理表示及目標即可得到結果.
(I)圓的圓心為,半徑為,點在圓內,因為動圓經過點且與圓相切,所以動圓與圓內切。設動圓半徑為,則 .
因為動圓經過點,所以, ,所以曲線E是M,N為焦點,長軸長為的橢圓. 由,得,所以曲線的方程為.
(II)當直線AB的斜率不存在時,,所以的最大值為2.
當直線的斜率存在時,設直線AB的方程為,設
聯(lián)立,得
,
∵
=
因此,
(ii)設原點到直線AB的距離為d,則
.
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內容如下:
級數(shù) | 一級 | 二級 | 三級 |
每月應納稅所得額元(含稅) | |||
稅率 | 3 | 10 | 20 |
現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應交納的個稅金額為( )
A.1800B.1000C.790D.560
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇“物理、化學和生物”三個選考科目,則學生甲的選考方案確定,“物理、化學和生物”為其選考方案.
某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:
性別 | 選考方案確定情況 | 物理 | 化學 | 生物 | 歷史 | 地理 | 政治 |
男生 | 選考方案確定的有6人 | 6 | 6 | 3 | 1 | 2 | 0 |
選考方案待確定的有8人 | 5 | 4 | 0 | 1 | 2 | 1 | |
女生 | 選考方案確定的有10人 | 8 | 9 | 6 | 3 | 3 | 1 |
選考方案待確定的有6人 | 5 | 4 | 0 | 0 | 1 | 1 |
(Ⅰ)試估計該學校高一年級確定選考生物的學生有多少人?
(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學和地理”的人數(shù).(直接寫出結果)
(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據等差數(shù)列的, ,列出關于首項、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項公式;(2)利用已知條件根據題意列出關于首項 ,公比 的方程組,解得、的值,求出數(shù)列的通項公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設等差數(shù)列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數(shù)列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結束】
18
【題目】已知命題:實數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實數(shù)的取值范圍;
(2)若是的充分不必要條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足:a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)通過公式bn=構造一個新的數(shù)列{bn}.若{bn}也是等差數(shù)列,求非零常數(shù)c;
(3)對于(2)中得到的數(shù)列{bn},求f(n)= (n∈N*)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中,底面是邊長為的等邊三角形, 為的中點,側棱,點在上,點在上,且, .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:關于的不等式無解;命題:指數(shù)函數(shù)是增函數(shù).
(1)若命題為真命題,求的取值范圍;
(2)若滿足為假命題為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com