函數(shù)f(x)=-mx+3,當(dāng)x∈[-2,+∞)時(shí)是增函數(shù),當(dāng)x∈(-∞,-2)時(shí)是減函數(shù),則f(1)等于

[  ]

A.-3
B.13
C.7
D.8
答案:B
解析:

解析:考查二次函數(shù)的單調(diào)性和性質(zhì)。

由已知函數(shù) 的圖象的對(duì)稱軸為直線 。

則有 ,得 ,故

。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+2x+mx
,若對(duì)任意x∈[1,+∞),f(x)>0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
nx2+mx,x∈R
,
(1)若f(x)的單調(diào)減區(qū)間是(1,2),求f(x)的零點(diǎn);
(2)若0<m<3,0<n<3,求f(x)在區(qū)間(1,2)上是減函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln
1+2x
+mx

(1)當(dāng)m=-1時(shí),求函數(shù)f(x)的最大值;
(2)當(dāng)m=1時(shí),設(shè)點(diǎn)A、B是函數(shù)y=f(x)(x∈[0,1])的圖象上任意不同的兩點(diǎn),求證:直線AB的斜率kAB<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
2mx-3
mx2+mx+1
的定義域?yàn)镽,則實(shí)數(shù)m的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(2+mx)-
3
2
x2

(1)若f(x)在
1
3
處取得極值,求m的值;
(2)若以函數(shù)F(x)=f(x)+
3
2
x2(x∈(0,3])
圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率k≥
1
4
恒成立,求正實(shí)數(shù)m的最小值;

查看答案和解析>>

同步練習(xí)冊(cè)答案