【題目】下列敘述正確的個數(shù)是(
①若a>b,則ac2>bc2
②若命題p為真命題題,命題q為假命題,則p∨q為假命題;
③若命題p:x0∈R,x ﹣x0+1≤0,則¬p:x∈R,x2﹣x+1>0.
A.0
B.1
C.2
D.3

【答案】B
【解析】解:①若a>b,當c=0時,ac2=bc2則ac2>bc2不成立,故①錯誤,
②若命題p為真命題,命題q為假命題,則p∨q為真命題;故②錯誤
③若命題p:x0∈R,x ﹣x0+1≤0,則¬p:x∈R,x2﹣x+1>0.故③正確,
故選:B
【考點精析】關(guān)于本題考查的命題的真假判斷與應(yīng)用,需要了解兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直角△ABC,AB=AC=3,P,Q分別為邊AB,BC上的點,M,N是平面上兩點,若 + =0,( + =0, =3 ,且直線MN經(jīng)過△ABC的外心,則 =(
A.
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一解三角形的題目因紙張破損,有一條件不清,具體如下:在△ABC中,已知a= ,2cos2 =( ﹣1)cosB,c= , 求角A,若該題的答案是A=60°,請將條件補充完整.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足:f′(x)>1﹣f(x),f(0)=3,f′(x)是f(x)的導(dǎo)函數(shù),則不等式exf(x)>ex+2(其中e為自然對數(shù)的底數(shù))的解集為(
A.{x|x>0}
B.{x|x<0}
C.{x|x<﹣1或x>1}
D.{x|x<﹣1或0<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓心(a,b)(a<0,b<0)在直線y=2x+1上的圓,若其圓心到x軸的距離恰好等于圓的半徑,在y軸上截得的弦長為 ,則圓的方程為( )
A.(x+2)2+(y+3)2=9
B.(x+3)2+(y+5)2=25
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的不等式上恒成立,求的取值范圍;

(2)設(shè)函數(shù),若上有兩個不同極值點,求的取值范圍,并判斷極值的正負.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個盒子中裝有5張編號依次為1,2,3,4,5的卡片,這5張卡片除號碼外完全相同,現(xiàn)進行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求條件“取出卡片的號碼之和不小于7或小于5”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從吉安市某校高一的1000名學生隨機抽取50名分析期中考試數(shù)學成績,被抽取學生成績?nèi)拷橛?5分和135分之間,將抽取的成績分成八組:第一組[95,100],第二組[100,105],…,第八組[130,135],如圖是按上述分組得到的頻率分布直方圖的一部分,已知前三組的人數(shù)成等差數(shù)列,第六組的人數(shù)為4人,第一組的人數(shù)是第七組、第八組人數(shù)之和.

(1)在圖上補全頻率分布直方圖,并估計該校1000名學生中成績在120分以上(含120分)的人數(shù);
(2)若從成績屬于第六組,第八組的所有學生中隨機抽取兩名學生,記他們的成績分別為x,y,事件G=||x﹣y|≤5|,求P(G).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】423日是世界讀書日,為提高學生對讀書的重視,讓更多的人暢游于書海中,從而收獲更多的知識,某高中的校學生會開展了主題為讓閱讀成為習慣,讓思考伴隨人生的實踐活動,校學生會實踐部的同學隨即抽查了學校的40名高一學生,通過調(diào)查它們是喜愛讀紙質(zhì)書還是喜愛讀電子書,來了解在校高一學生的讀書習慣,得到如表列聯(lián)表:

喜歡讀紙質(zhì)書

不喜歡讀紙質(zhì)書

合計

16

4

20

8

12

20

合計

24

16

40

(Ⅰ)根據(jù)如表,能否有99%的把握認為是否喜歡讀紙質(zhì)書籍與性別有關(guān)系?

(Ⅱ)從被抽查的16名不喜歡讀紙質(zhì)書籍的學生中隨機抽取2名學生,求抽到男生人數(shù)ξ的分布列及其數(shù)學期望E(ξ).

參考公式:K2=,其中n=a+b+c+d.

下列的臨界值表供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案