15.已知角α終邊與單位圓的交點(diǎn)坐標(biāo)為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),那么sinα=$\frac{1}{2}$,cosα=-.

分析 由條件利用任意角的三角函數(shù)的定義,求得sinα 和cosα 的值.

解答 解:∵角α終邊與單位圓的交點(diǎn)坐標(biāo)為(-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),∴x=-$\frac{\sqrt{3}}{2}$,y=$\frac{1}{2}$,r=1,
那么sinα=$\frac{y}{r}$=$\frac{1}{2}$,cosα=$\frac{x}{r}$=-$\frac{\sqrt{3}}{2}$,
故答案為:$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.從集合A到集合B的映射f:x→x2+1,若A={-2,-1,0,1,2},則B中至少有3個(gè)元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知曲線(xiàn)C1:$\frac{{x}^{2}}{8-k}$-$\frac{{y}^{2}}{4}$=1與C2:$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{6-k}$=1都是雙曲線(xiàn),則( 。
A.0<k<8,C1與C2的實(shí)軸長(zhǎng)相等B.k<6,C1與C2的實(shí)軸長(zhǎng)相等
C.0<k<8,C1與C2的焦距相等D.k<6,C1與C2的焦距相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.過(guò)定點(diǎn)A(0,a)在x軸上截得弦長(zhǎng)為2a的動(dòng)圓圓心的軌跡方程是( 。
A.x2+(y-a)2=a2B.y2=2axC.(x-a)2+y2=a2D.x2=2ay

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,空間四邊形PABC中,PA,PB,PC兩兩垂直,∠PBC=60°,求BC與平面PAB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{\sqrt{4-{x}^{2}}}{|x+3|-3}$,若f(a)=$\frac{5\sqrt{7}}{3}$,則f(-a)=(  )
A.$\frac{5\sqrt{7}}{3}$B.-$\frac{5\sqrt{7}}{3}$C.2$\sqrt{7}$D.4$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\frac{{e}^{x}}{|x|}$,關(guān)于x的方程f2(x)+(m+1)f(x)+m+4=0(m∈R)有四個(gè)相異的實(shí)數(shù)根,則m的取值范圍是( 。
A.(-4,-e-$\frac{4}{e+1}$)B.(-4,-3)C.(-e-$\frac{4}{e+1}$,-3)D.(-e-$\frac{4}{e+1}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若sinα=-$\frac{\sqrt{2}}{2}$,且α∈[0,2π],則α所有可能取得值是( 。
A.$\frac{π}{4}$,$\frac{3π}{4}$B.$\frac{3π}{4}$,$\frac{5π}{4}$C.$\frac{5π}{4}$D.$\frac{5π}{4}$,$\frac{7π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.對(duì)任意x∈R,比較x2+x+1與$\frac{3}{4}$的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案