已知f(x)是奇函數(shù),且對(duì)定義域內(nèi)任意自變量x滿足f(2-x)=f(x).當(dāng)x∈(0,1]時(shí),f(x)=lnx,則當(dāng)x∈[-1,0)時(shí)f(x)=________;當(dāng)x∈(4k,4k+1],k∈Z時(shí),f(x)=________.

-ln(-x)    ln(x-4k).
分析:要求x∈[-1,0)時(shí)f(x)的解析式,需將自變量x定義在[-1,0),再利用-x∈(0,1],轉(zhuǎn)化到已知條件上,利用函數(shù)的奇偶性與周期性即可解決問(wèn)題.
解答:∵x∈[-1,0),
∴-x∈(0,1],
∴f(-x)=ln(-x),
∵f(-x)=-f(x),
∴f(x)=-ln(-x),
∵f(-x)=-f(x),f(2-x)=f(x),
∴f(x+4)=f(x),
∵x∈(4k,4k+1],k∈Z,
∴x-4k∈(0,1],
∴f(x-4k)=ln(x-4k).
∴f(x)=ln(x-4k).
故答案為:-ln(-x),ln(x-4k).
點(diǎn)評(píng):本題考查分段函數(shù)的解析式求法,著重考查函數(shù)的奇偶性與周期性的應(yīng)用,考查轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知f(x)是奇函數(shù),且x<0時(shí),f(x)=cosx+sin2x,則當(dāng)x>0時(shí),f(x)的表達(dá)式是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、已知f(x)是奇函數(shù),當(dāng)x>0時(shí)f(x)=-x(1+x),當(dāng)x<0時(shí)f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),且f(2-x)=f(x),當(dāng)x∈[2,3]時(shí),f(x)=log2(x-1),則當(dāng)x∈[1,2]時(shí),f(x)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是奇函數(shù),g(x)是偶函數(shù),且f(x)-g(x)=x3+x2+x.
(1)求f(x)的解析式;
(2)判斷f(x)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•茂名一模)已知f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2x,則f(-
1
2
)
=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案