7.已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,求f(x)的解析式.

分析 由函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,求導(dǎo),可得±1是f′(x)=0的兩根,且f′(0)=-3,解方程組即可求得,a,b,c的值,從而求得f(x)的解析式

解答 解:f'(x)=3ax2+2bx+c,
依題意$\left\{\begin{array}{l}{f′(1)=3a+2b+c=0}\\{f′(-1)=3a-2b+c}\\{f′(0)=c=-3}\end{array}\right.$ 
解得a=1,b=0,c=-3,
∴f(x)=x3-3x

點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值問題,考查利用導(dǎo)數(shù)研究曲線上某點的切線問題,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個幾何體的三視圖如圖所示,則這個幾何體的體積是( 。
A.$2\sqrt{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$\overrightarrow a$=(1,0),$\overrightarrow b$=(-$\frac{1}{2}$,$\frac{{\sqrt{3}}}{2}$),則$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=ex-x-1的最小值是( 。
A.-ln2B.$-\sqrt{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.圓的極坐標(biāo)方程為ρ=2(cosθ+sinθ),則該圓的圓心極坐標(biāo)是( 。
A.$({1,\frac{π}{4}})$B.($\sqrt{2}$,$\frac{π}{4}$)C.($\frac{1}{2}$,$\frac{π}{4}$)D.$({2,\frac{π}{4}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知等差數(shù)列{an}中,a2+a4=10,a5=9,數(shù)列{bn}中,b1=a1,bn+1=bn+an
(1)求數(shù)列{an}的通項公式;
(2)若cn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{cn}的前n項和Tn
(3)求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.橢圓$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一點M到直線x+2y-10=0的距離的最小值為( 。
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$,其中向量$\overrightarrow m$=(2cosx,1),$\overrightarrow n$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知雙曲線kx2-y2=1(k>0)的一條漸近線與直線2x+y-3=0垂直,則雙曲線的離心率是$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

同步練習(xí)冊答案