某地西紅柿上市時間僅能持續(xù)5個月,預測上市初期和后期會因供不應求使價格呈連續(xù)上漲勢態(tài),而中期又將出現(xiàn)供大于求使價格連續(xù)下跌,F(xiàn)有三種價格模擬函數(shù):①,②,③,(以上三式中均是不為零的常數(shù),且)
(1)    為了準確研究其價格走勢,應選擇哪種價格模擬函數(shù),為什么?
(2)若,求出所選函數(shù)的解析式(注:函數(shù)的定義域是)。其中表示8月1日,表示9月1日,……,以此類推;為保證該地的經(jīng)濟收益,當?shù)卣媱澰趦r格下跌期間積極拓寬外銷,請你預測該西紅柿將在哪幾個月份內(nèi)價格下跌。

(1)符合本題函數(shù)模型的函數(shù)必須先單調(diào)遞增,再單調(diào)遞減,最后單調(diào)遞增,所以最符合的函數(shù)模型為③
(2)可以預測這種西紅柿將在9,10兩月份價格下跌

解析試題分析:解;⑴依題意,符合本題函數(shù)模型的函數(shù)必須先單調(diào)遞增,再單調(diào)遞減,最后單調(diào)遞增,所以最符合的函數(shù)模型為③。   3分
下面給出分析:對此函數(shù)求導,得

……6分
⑵將代入
………9分
,
由(1)得,………11分
依題意,可以預測這種西紅柿將在9,10兩月份價格下跌!12分
考點:函數(shù)模型以及運用
點評:解決的關鍵是能利用已知的表格來分析函數(shù)的單調(diào)性,同時結(jié)合解析式來求解函數(shù)的單調(diào)性,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

解不等式:-3<4x-4x2≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務,每件產(chǎn)品由3個A 型零件和1個B 型零件配套組成.每個工人每小時能加工5個A 型零件或者3個B 型零件,現(xiàn)在把這些工人分成兩組同時工作(分組后人數(shù)不再進行調(diào)整),每組加工同一中型號的零件.設加工A 型零件的工人人數(shù)為x名(x∈N*
(1)設完成A 型零件加工所需時間為小時,寫出的解析式;
(2)為了在最短時間內(nèi)完成全部生產(chǎn)任務,x應取何值?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

兩縣城A和B相距20km,現(xiàn)計劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點C建造垃圾處理廠,其對城市的影響度與所選地點到城市的距離有關,對城A和城B的總影響度為對城A與城B的影響度之和,記C點到城A的距離為,建在C處的垃圾處理廠對城A和城B的總影響度為,統(tǒng)計調(diào)查表明:垃圾處理廠對城A的影響度與所選地點到城A的距離的平方成反比,比例系數(shù)為4;對城B的影響度與所選地點到城B的距離的平方成反比,比例系數(shù)為k,當垃圾處理廠建在AB的中點時,對A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點,使建在此處的垃圾處理廠對城A和城B的總影響度最小?若存在,求出該點到城A的距離;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司試銷一種新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(元/件),可近似看做一次函數(shù)的關系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價-成本總價)為S元,
①求S關于的函數(shù)表達式;
②求該公司可獲得的最大毛利潤,并求出此時相應的銷售單價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一艘輪船在航行過程中的燃料費與它的速度的立方成正比例關系,其他與速度無關的費用每小時96元,已知在速度為每小時10公里時,每小時的燃料費是6元,要使行駛1公里所需的費用總和最小,這艘輪船的速度應確定為每小時多少公里?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設二次函數(shù)滿足下列條件:
①當時, 的最小值為0,且恒成立;
②當時,恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的實數(shù)m(m>1),使得存在實數(shù)t,只要當時,就有成立

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了綠化城市,準備在如圖所示的區(qū)域內(nèi)修建一個矩形PQRC的草坪,且PQ//BC,RQBC。另外的內(nèi)部有一文物保護區(qū)不能占用,經(jīng)測量AB="100m," BC="80m," AE="30m," AF=20m,應如何設計才能使草坪的占地面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

建造一間占 地面積為12m²的背面靠墻的豬圈,底面為長方形,豬圈正面的造價為每平方米12元,側(cè)面的造價為每平方米80元,屋頂造價為1120元.如果墻高3m,且不計豬圈背面的費用,問:如何設計能使豬圈的總 造價最低?最低總造價是多少?

查看答案和解析>>

同步練習冊答案