某地西紅柿上市時(shí)間僅能持續(xù)5個(gè)月,預(yù)測(cè)上市初期和后期會(huì)因供不應(yīng)求使價(jià)格呈連續(xù)上漲勢(shì)態(tài),而中期又將出現(xiàn)供大于求使價(jià)格連續(xù)下跌。現(xiàn)有三種價(jià)格模擬函數(shù):①,②,③,(以上三式中均是不為零的常數(shù),且)
(1)    為了準(zhǔn)確研究其價(jià)格走勢(shì),應(yīng)選擇哪種價(jià)格模擬函數(shù),為什么?
(2)若,求出所選函數(shù)的解析式(注:函數(shù)的定義域是)。其中表示8月1日,表示9月1日,……,以此類(lèi)推;為保證該地的經(jīng)濟(jì)收益,當(dāng)?shù)卣?jì)劃在價(jià)格下跌期間積極拓寬外銷(xiāo),請(qǐng)你預(yù)測(cè)該西紅柿將在哪幾個(gè)月份內(nèi)價(jià)格下跌。

(1)符合本題函數(shù)模型的函數(shù)必須先單調(diào)遞增,再單調(diào)遞減,最后單調(diào)遞增,所以最符合的函數(shù)模型為③
(2)可以預(yù)測(cè)這種西紅柿將在9,10兩月份價(jià)格下跌

解析試題分析:解;⑴依題意,符合本題函數(shù)模型的函數(shù)必須先單調(diào)遞增,再單調(diào)遞減,最后單調(diào)遞增,所以最符合的函數(shù)模型為③。   3分
下面給出分析:對(duì)此函數(shù)求導(dǎo),得
,
……6分
⑵將代入
………9分
,
由(1)得,………11分
依題意,可以預(yù)測(cè)這種西紅柿將在9,10兩月份價(jià)格下跌!12分
考點(diǎn):函數(shù)模型以及運(yùn)用
點(diǎn)評(píng):解決的關(guān)鍵是能利用已知的表格來(lái)分析函數(shù)的單調(diào)性,同時(shí)結(jié)合解析式來(lái)求解函數(shù)的單調(diào)性,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

解不等式:-3<4x-4x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某車(chē)間有50名工人,要完成150件產(chǎn)品的生產(chǎn)任務(wù),每件產(chǎn)品由3個(gè)A 型零件和1個(gè)B 型零件配套組成.每個(gè)工人每小時(shí)能加工5個(gè)A 型零件或者3個(gè)B 型零件,現(xiàn)在把這些工人分成兩組同時(shí)工作(分組后人數(shù)不再進(jìn)行調(diào)整),每組加工同一中型號(hào)的零件.設(shè)加工A 型零件的工人人數(shù)為x名(x∈N*
(1)設(shè)完成A 型零件加工所需時(shí)間為小時(shí),寫(xiě)出的解析式;
(2)為了在最短時(shí)間內(nèi)完成全部生產(chǎn)任務(wù),x應(yīng)取何值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

兩縣城A和B相距20km,現(xiàn)計(jì)劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城A和城B的總影響度為對(duì)城A與城B的影響度之和,記C點(diǎn)到城A的距離為,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在AB的中點(diǎn)時(shí),對(duì)A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最?若存在,求出該點(diǎn)到城A的距離;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司試銷(xiāo)一種新產(chǎn)品,規(guī)定試銷(xiāo)時(shí)銷(xiāo)售單價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷(xiāo)調(diào)查,發(fā)現(xiàn)銷(xiāo)售量y(件)與銷(xiāo)售單價(jià)(元/件),可近似看做一次函數(shù)的關(guān)系(圖象如下圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷(xiāo)售總價(jià)-成本總價(jià))為S元,
①求S關(guān)于的函數(shù)表達(dá)式;
②求該公司可獲得的最大毛利潤(rùn),并求出此時(shí)相應(yīng)的銷(xiāo)售單價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一艘輪船在航行過(guò)程中的燃料費(fèi)與它的速度的立方成正比例關(guān)系,其他與速度無(wú)關(guān)的費(fèi)用每小時(shí)96元,已知在速度為每小時(shí)10公里時(shí),每小時(shí)的燃料費(fèi)是6元,要使行駛1公里所需的費(fèi)用總和最小,這艘輪船的速度應(yīng)確定為每小時(shí)多少公里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù)滿足下列條件:
①當(dāng)時(shí), 的最小值為0,且恒成立;
②當(dāng)時(shí),恒成立.
(I)求的值;
(Ⅱ)求的解析式;
(Ⅲ)求最大的實(shí)數(shù)m(m>1),使得存在實(shí)數(shù)t,只要當(dāng)時(shí),就有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了綠化城市,準(zhǔn)備在如圖所示的區(qū)域內(nèi)修建一個(gè)矩形PQRC的草坪,且PQ//BC,RQBC。另外的內(nèi)部有一文物保護(hù)區(qū)不能占用,經(jīng)測(cè)量AB="100m," BC="80m," AE="30m," AF=20m,應(yīng)如何設(shè)計(jì)才能使草坪的占地面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

建造一間占 地面積為12m²的背面靠墻的豬圈,底面為長(zhǎng)方形,豬圈正面的造價(jià)為每平方米12元,側(cè)面的造價(jià)為每平方米80元,屋頂造價(jià)為1120元.如果墻高3m,且不計(jì)豬圈背面的費(fèi)用,問(wèn):如何設(shè)計(jì)能使豬圈的總 造價(jià)最低?最低總造價(jià)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案