【題目】若存在滿足下列三個條件的集合,,,則稱偶數(shù)萌數(shù)

①集合,為集合個非空子集,,兩兩之間的交集為空集,且;②集合中的所有數(shù)均為奇數(shù),集合中的所有數(shù)均為偶數(shù),所有的倍數(shù)都在集合中;③集合,所有元素的和分別為,,且.注:

1)判斷:是否為萌數(shù)?若為萌數(shù),寫出符合條件的集合,,若不是萌數(shù),說明理由.

2)證明:偶數(shù)為萌數(shù)成立的必要條件.

【答案】1)是,,;(2)證明見解析;

【解析】

1)根據(jù)條件先確定,再根據(jù)和確定以及,最后確定C;

2)說明不可能成立,即可證得結(jié)果

1 因為所有的倍數(shù)都在集合中,所以

因為,萌數(shù), ,;

2)當(dāng)時,因為所有的倍數(shù)都在集合中,所以

,即時,偶數(shù)不為萌數(shù);

當(dāng)時,因為,所以時,偶數(shù)不為萌數(shù);

因此偶數(shù)為萌數(shù)時,,即偶數(shù)為萌數(shù)成立的必要條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知非空集合滿足:若,則必有,問這樣的集合S______個;請將該問題推廣到一般情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,,平面.

(1)證明:;

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐, 平面平面,.

1)求證:平面;

2)求直線與平面所成角的正弦值;

3)在棱上是否存在點,使得平面?若存在, 的值;若不存在, 說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:

場數(shù)

9

10

11

12

13

14

人數(shù)

10

18

22

25

20

5

將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?

非歌迷

歌迷

合計

合計

(2)將收看該節(jié)目所有場次(14場)的觀眾稱為“超級歌迷”,已知“超級歌迷”中有2名女性,若從“超級歌迷”中任意選取2人,求至少有1名女性觀眾的概率.

P(K2≥k)

0.05

0.01

k

3.841

6.635

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列對任意滿足,下面給出關(guān)于數(shù)列的四個命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個數(shù)為(

A. 1個B. 2個C. 3個D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論的單調(diào)性;

(Ⅱ)若,且對任意的,都有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點在直線上,過點作圓的切線,切點為.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若,試求點的坐標(biāo);

(3)若點的坐標(biāo)為,過點作直線與圓交于兩點,當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】單位計劃組織55名職工進(jìn)行一種疾病的篩查,先到本單位醫(yī)務(wù)室進(jìn)行血檢,血檢呈陽性者再到醫(yī)院進(jìn)一步檢測.已知隨機(jī)一人血檢呈陽性的概率為 1% ,且每個人血檢是否呈陽性相互獨立.

(Ⅰ) 根據(jù)經(jīng)驗,采用分組檢測法可有效減少工作量,具體操作如下:將待檢人員隨機(jī)等分成若干組,先將每組的血樣混在一起化驗,若結(jié)果呈陰性,則可斷定本組血樣全部為陰性,不必再化驗;若結(jié)果呈陽性,則本組中至少有一人呈陽性,再逐個化驗.

現(xiàn)有兩個分組方案:

方案一: 將 55 人分成 11 組,每組 5 人;

方案二:將 55 人分成5組,每組 11 人;

試分析哪一個方案工作量更少?

(Ⅱ) 若該疾病的患病率為 0.4% ,且患該疾病者血檢呈陽性的概率為99% ,該單位有一職工血檢呈陽性,求該職工確實患該疾病的概率.(參考數(shù)據(jù): )

查看答案和解析>>

同步練習(xí)冊答案