已知函數(shù)
(I)討論函數(shù)
的單調(diào)性;
(Ⅱ)當(dāng)
時(shí),求函數(shù)
在區(qū)間
上的最值.
解: (Ⅰ)
(x>0) 2分
(1) 當(dāng)
時(shí),
在區(qū)間
上單調(diào)遞增.
(2) 當(dāng)
時(shí),在區(qū)間
上,
單調(diào)遞減;在區(qū)間
上,
單調(diào)遞增. 5分
綜上可知:當(dāng)
時(shí),
在區(qū)間
上單調(diào)遞增.
當(dāng)
時(shí),在區(qū)間
上,
單調(diào)遞減;在區(qū)間
上,
單調(diào)遞增. 7分
(Ⅱ)當(dāng)a=2時(shí),
,
令
,得x=2
本試題主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用求解函數(shù)的最值問(wèn)題,和判定函數(shù)單調(diào)性的運(yùn)用。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)f(x)=x2-(a+2)x+alnx(a∈R)。
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=4,y=f(x)的圖像與直線y=m有三個(gè)交點(diǎn),求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
在
處取得極值,求函數(shù)
以及
的極大值和極小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
f'(x)是f(x)的導(dǎo)函數(shù),f'(x)的圖象如右圖所示,則f(x)的圖象只可能是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)f(x)=x2-(2a+1)x+alnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最小值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
是定義在
上的偶函數(shù),當(dāng)
時(shí)
,且
則不等式
的解集為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
設(shè)函數(shù)f(x)=kx
3+3(k-1)x
2+1在區(qū)間(0,4)上是減函數(shù),則的取值范圍 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知函數(shù)
.
(Ⅰ)若曲線
在
處的切線方程為
,求實(shí)數(shù)
和
的值;
(Ⅱ)若
,且對(duì)任意
,都
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
已知R上可導(dǎo)函數(shù)
的圖象如圖所示,則不等式
的解集為( )
查看答案和解析>>