【題目】已知橢圓 的左、右焦點分別為, ,點在橢圓上.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同交點、時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,說明理由.

【答案】(1;(2)不存在這樣的點,理由見解析.

【解析】試題分析:(1)借助題設條件運用橢圓定義建立方程求解;(2)借助題設運用直線與橢圓的位置關系探求.

試題解析:

1)設橢圓的焦距為,則,

因為在橢圓上,所以,

因此, ,故橢圓的方程為

2)橢圓上不存在這樣的點.證明如下:

設直線的方程為,

, , 的中點為

,

所以,且,故,且,

知四邊形為平行四邊形,

為線段的中點,因此, 也是線段的中點,

所以,可得,

,所以

因此點不在橢圓上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】劉老師是一位經(jīng)驗豐富的高三理科班班主任,經(jīng)長期研究,他發(fā)現(xiàn)高中理科班的學生的數(shù)學成績(總分150分)與理綜成績(物理、化學與生物的綜合,總分300分)具有較強的線性相關性,以下是劉老師隨機選取的八名學生在高考中的數(shù)學得分x與理綜得分y(如下表):

學生編號

1

2

3

4

5

6

7

8

數(shù)學分數(shù)x

52

64

87

96

105

123

132

141

理綜分數(shù)y

112

132

177

190

218

239

257

275

參考數(shù)據(jù)及公式:

(1)求出y關于x的線性回歸方程;

(2)若小汪高考數(shù)學110分,請你預測他理綜得分約為多少分?(精確到整數(shù)位);

(3)小金同學的文科一般,語文與英語一起能穩(wěn)定在215分左右.如果他的目標是在

高考總分沖擊600分,請你幫他估算他的數(shù)學與理綜大約分別至少需要拿到多少分?(精確到整數(shù)位).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .

(Ⅰ)求證:∥平面;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】衡州市臨棗中學高二某小組隨機調(diào)查芙蓉社區(qū)160個人,以研究這一社區(qū)居民在20:00-22:00時間段的休閑方式與性別的關系,得到下面的數(shù)據(jù)表:

休閑方式

性別

看電視

看書

合計

20

100

120

20

20

40

合計

40

120

160

下面臨界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(Ⅰ)將此樣本的頻率估計為總體的概率,隨機調(diào)查3名在該社區(qū)的男性,設調(diào)查的3人在這一時間段以看書為休閑方式的人數(shù)為隨機變量,求 的分別列和期望;

(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認為“在20:00-22:00時間段的休閑方式與性別有關系”?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解某單位員工的月工資水平,從該單位500位員工中隨機抽取了50位進行調(diào)查,得到如下頻數(shù)分布表和頻率分布直方圖:

月工資

(單位:百元)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

男員工數(shù)

1

8

10

6

4

4

女員工數(shù)

4

2

5

4

1

1

(1) 試由上圖估計該單位員工月平均工資;

(2)現(xiàn)用分層抽樣的方法從月工資在的兩組所調(diào)查的男員工中隨機選取5人,問各應抽取多少人?

(3)若從月工資在兩組所調(diào)查的女員工中隨機選取2人,試求這2人月工資差不超過1000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和為Sn=2n2,{bn}為等比數(shù)列,且a1b1b2(a2a1)=b1

(1)求數(shù)列{an}和{bn}的通項公式;

(2)設cn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù).

(1)當時,求在區(qū)間上的最值;

(2)討論的單調(diào)性;

(3)當時,有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點,橢圓的離心率為,是橢圓的右焦點,直線的斜率為,為坐標原點.

(1)求的方程;

(2)設過點的動直線相交于兩點,問:是否存在直線,使以為直徑的圓經(jīng)過原點,若存在,求出對應直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學舉行了一次環(huán)保知識競賽, 全校學生參加了這次競賽.為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取正整數(shù),滿分為100分)作為樣本進行統(tǒng)計.請根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:


組別

分組

頻數(shù)

頻率

1

[50,60

8

0 16

2

[6070

a


3

[70,80

20

0 40

4

[80,90


0 08

5

[90,100]

2

b


合計



1)求出的值;

2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取2名同學到廣場參加環(huán)保知識的志愿宣傳活動

)求所抽取的2名同學中至少有1名同學來自第5組的概率;

)求所抽取的2名同學來自同一組的概率

查看答案和解析>>

同步練習冊答案