已知各項(xiàng)均為正數(shù)的數(shù)列{a}滿(mǎn)足a=2a+aa,且a+a=2a+4,其中n∈N.

(Ⅰ)若b=,求數(shù)列{b}的通項(xiàng)公式;

(Ⅱ)證明:++…+>(n≥2).

 

【答案】

(1)b=(n∈N

(2)構(gòu)造函數(shù)借助于函數(shù)的最值來(lái)證明不等式。

【解析】

試題分析:解:(Ⅰ)因?yàn)閍=2a+aa,即(a+a)(2a-a)=0.            1分

又a>0,所以有2a-a=0,即2a=a

所以數(shù)列是公比為2的等比數(shù)列,              3分

,解得。

從而,數(shù)列{a}的通項(xiàng)公式為a=2(n∈N),即:b=(n∈N). 5分

(Ⅱ)構(gòu)造函數(shù)f(x)=(b-x)(x>0),

則f′(x)=+=,

當(dāng)0<x<b時(shí),f′(x)>0,x>b時(shí),f′(x)<0,

所以f(x)的最大值是f(b)=,所以f(x)≤.            7分

(b-x)(x>0,i=1,2,3…n),取“=”的條件是x=b(i=1,2,3…n),

所以++…+>(b+b+…+b-nx), 9分

令x=,則++…+>

所以++…+>,      11分

++…+>(n≥2).                12分

考點(diǎn):數(shù)列與導(dǎo)數(shù)、不等式

點(diǎn)評(píng):解決的關(guān)鍵是能利用等比數(shù)列來(lái)求解通項(xiàng)公式,同時(shí)能結(jié)合導(dǎo)數(shù)來(lái)拍腦袋函數(shù)單調(diào)性,以及求解函數(shù)的最值,同時(shí)證明不等式,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較數(shù)學(xué)公式數(shù)學(xué)公式的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:青島二模 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《第2章 數(shù)列》、《第3章 不等式》2010年單元測(cè)試卷(陳經(jīng)綸中學(xué))(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年高考復(fù)習(xí)方案配套課標(biāo)版月考數(shù)學(xué)試卷(二)(解析版) 題型:解答題

已知各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求數(shù){an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù){bn}的前n項(xiàng)和Tn,令bn=an2,其中n∈N*,試比較的大小,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案