,則f(f())=(    )。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)V是已知平面M上所有向量的集合,對(duì)于映射f:V→V,
a
∈V
,記
a
的象為f(
a
)
.若映射f:V→V滿足:對(duì)所有
a
,
b
∈V
及任意實(shí)數(shù)λ,μ都有f(λ
a
b
)=λf(
a
)+μf(
b
)
,則f稱為平面M上的線性變換.現(xiàn)有下列命題:
①設(shè)f是平面M上的線性變換,則f(
0
)=
0

②對(duì)
a
∈V
設(shè)f(
a
)=2
a
,則f是平面M上的線性變換;
③若
e
是平面M上的單位向量,對(duì)
a
∈V
設(shè)f(
a
)=
a
-
e
,則f是平面M上的線性變換;
④設(shè)f是平面M上的線性變換,
a
,
b
∈V
,若
a
,
b
共線,則f(
a
),f(
b
)
也共線.
其中真命題是
 
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=asin2x+bcos2x,a,b∈R,ab≠0若f(x)≤|f(
π
6
)|對(duì)一切x∈R恒成立,則
①f(
11π
12
)=0.
②|f(
10
)|<|f(
π
5
)|.
③f(x)既不是奇函數(shù)也不是偶函數(shù).
④f(x)的單調(diào)遞增區(qū)間是[kπ+
π
6
,kπ+
3
](k∈Z).
⑤存在經(jīng)過(guò)點(diǎn)(a,b)的直線于函數(shù)f(x)的圖象不相交.
以上結(jié)論正確的是
 
寫(xiě)出正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f'(x)是f(x)的導(dǎo)數(shù),記f(1)(x)=f'(x),f(n)(x)=(f(n-1)(x))'(n∈N,n≥2),給出下列四個(gè)結(jié)論:
①若f(x)=xn,則f(5)(1)=120;
②若f(x)=cosx,則f(4)(x)=f(x);
③若f(x)=ex,則f(n)(x)=f(x)(n∈N+);
④設(shè)f(x)、g(x)、f(n)(x)和g(n)(x)(n∈N+)都是相同定義域上的可導(dǎo)函數(shù),h(x)=f(x)•g(x),則h(n)(x)=f(n)(x)•g(n)(x)(n∈N+).
則結(jié)論正確的是
①②③
①②③
(多填、少填、錯(cuò)填均得零分).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮北二模)設(shè)f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f(
π
6
)|對(duì)一切x∈R恒成立,則
①f(
11π
12
)=0;
②|f(
12
)|<|f(
π
5
)|;
③f(x)既不是奇函數(shù)也不是偶函數(shù);
④f(x)的單調(diào)遞增區(qū)間是[kπ+
π
6
,kπ+
3
](k∈Z);
⑤經(jīng)過(guò)點(diǎn)(a,b)的所有直線均與函數(shù)f(x)的圖象相交.
以上結(jié)論正確的是
①③⑤
①③⑤
(寫(xiě)出所有正確結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項(xiàng)公式;
(3)對(duì)(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案