【題目】如圖,在四棱錐中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點M,使得二面角M﹣AC﹣D的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請說明理由.
【答案】
(1)證明:∵四邊形ABCD是直角梯形,
AD=CD=2 ,BC=4 ,
∴AC=4,AB= = =4,
∴△ABC是等腰直角三角形,即AB⊥AC,
∵PA⊥平面ABCD,AB平面ABCD,
∴PA⊥AB,
∴AB⊥平面PAC,又PC平面PAC,
∴AB⊥PC
(2)解:假設存在符合條件的點M,過點M作MN⊥AD于N,則MN∥PA,
∴MN⊥平面ABCD,∴MN⊥AC.
過點M作MG⊥AC于G,連接NG,則AC⊥平面MNG,
∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.
若∠MGN=45°,則NG=MN,又AN= NG= MN,
∴MN=1,即M是線段PD的中點.
∴存在點M使得二面角M﹣AC﹣D的大小為45°.
在三棱錐M﹣ABC中,VM﹣ABC= S△ABCMN= = ,
設點B到平面MAC的距離是h,則VB﹣MAC= ,
∵MG= MN= ,∴S△MAC= = =2 ,
∴ = ,解得h=2 .
在△ABN中,AB=4,AN= ,∠BAN=135°,∴BN= = ,
∴BM= =3 ,
∴BM與平面MAC所成角的正弦值為 = .
【解析】(1)利用直角梯形的性質求出AB,AC的長,根據(jù)勾股定理的逆定理得出AB⊥AC,由PA⊥平面ABCD得出AB⊥PA,故AB⊥平面PAC,于是AB⊥PC;(2)假設存在點M,做出二面角的平面角,根據(jù)勾股定理求出M到平面ABCD的距離從而確定M的位置,利用棱錐的體積求出B到平面MAC的距離h,根據(jù)勾股定理計算BM,則 即為所求角的正弦值.
【考點精析】本題主要考查了直線與平面垂直的性質和空間角的異面直線所成的角的相關知識點,需要掌握垂直于同一個平面的兩條直線平行;已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)設g(x)是f(x)的導函數(shù),求函數(shù)g(x)的極值;
(2)是否存在常數(shù)a,使得x∈[1,+∞)時,f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中.圓C的參數(shù)方程為 (α為參數(shù)),以坐標原點為極點,x軸正半軸為極軸建立極坐標系,點D的極坐標為(ρ1 , π).
(1)求圓C的極坐標方程;
(2)過點D作圓C的切線,切點分別為A,B,且∠ADB=60°,求ρ1 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1所有的棱長均為2,A1B= ,A1B⊥AC.
(Ⅰ)求證:A1C1⊥B1C;
(Ⅱ)求直線AC和平面ABB1A1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,若f(x)的兩個零點分別為x1 , x2 , 則|x1﹣x2|=( )
A.
B.1+
C.2
D. +ln2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系xOy中,過點P(1,0)的直線l的參數(shù)方程是 (t是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C點的極坐標方程為ρ=﹣4sin(θ﹣ ).
(1)判斷直線l與曲線C的位置關系;
(2)若直線l與曲線C交于兩點A、B,求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sin(ωx+φ)(ω>0,﹣ <φ< ),A( ,0)為f(x)圖象的對稱中心,B,C是該圖象上相鄰的最高點和最低點,若BC=4,則f(x)的單調遞增區(qū)間是( )
A.(2k﹣ ,2k+ ),k∈Z
B.(2kπ﹣ π,2kπ+ π),k∈Z
C.(4k﹣ ,4k+ ),k∈Z
D.(4kπ﹣ π,4kπ+ π),k∈Z
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=eax(a≠0).
(1)當 時,令 (x>0),求函數(shù)g(x)在[m,m+1](m>0)上的最小值;
(2)若對于一切x∈R,f(x)﹣x﹣1≥0恒成立,求a的取值集合;
(3)求證: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com