【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點,直線與(為坐標(biāo)原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標(biāo);若不存在,請說明理由.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分13分)
如圖5,已知點是圓心為半徑為1的半圓弧上從點數(shù)起的第一個三等分點,是直徑,,平面,點是的中點.
(1)求二面角的余弦值.
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的圖象形如漢字“囧”,故稱其為“囧函數(shù)”.
下列命題:
①“囧函數(shù)”的值域為;
②“囧函數(shù)”在上單調(diào)遞增;
③“囧函數(shù)”的圖象關(guān)于軸對稱;
④“囧函數(shù)”有兩個零點;
⑤“囧函數(shù)”的圖象與直線至少有一個交點.其中正確命題的個數(shù)為( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4個人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1) 求出4個人中恰有2個人去 參加甲游戲的概率;
(2)求這4個人中去參加甲游戲人數(shù)大于去參加乙游戲的人數(shù)的概率;
(3)用分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=b·ax(其中a,b為常量,且a>0,a≠1)的圖象經(jīng)過點A(1,6),B(3,24).
(1)求f(x);
(2)若不等式-m≥0在x∈(-∞,1]時恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)是定義在上的增函數(shù),函數(shù)的圖象關(guān)于點對稱.若實數(shù)滿足不等式,則的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域為,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟效益好的特點.研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過4(尾/立方米)時,的值為(千克/年);當(dāng)時,是的一次函數(shù);當(dāng)達(dá)到(尾/立方米)時,因缺氧等原因,的值為(千克/年).
(1)當(dāng)時,求函數(shù)的表達(dá)式;
(2)當(dāng)養(yǎng)殖密度為多大時,魚的年生長量(單位:千克/立方米)可以達(dá)到最大,并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著機構(gòu)改革工作的深入進(jìn)行,各單位要減員增效,有一家公司現(xiàn)有職員2a人(140<2a<420,且a為偶數(shù)),每人每年可創(chuàng)利b萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.01b萬元,但公司需付下崗職員每人每年0.4b萬元的生活費,并且該公司正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為獲得最大的經(jīng)濟效益,該公司應(yīng)裁員多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com